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1. The Lemma

Our starting paint is a real n × n matrix, M = (mij). The Leibez formula gives us the
determinant of M in terms of the permutations of the matrix elements. So we have

detM =
∑
σ

signσm1σ(1)m2σ(2)...mnσ(n)

Note that the sign of σ may be -1 or 1. This depends on whether the number of transpo-
sitions is even or odd.

Definition 1.1. A graph is a bipartite iff its vertex sets may be partitioned into two disjoint
sets, such that every edge in the graph joins a vertex from one set to a vertex in the other
set. We may say that this graph is directed/weighted if the edges have a direction/numerical
weighting associated with them.

We consider a weighted directed bipartite graph. Let the vertices A1...An represent rows of
M , and B1...Bn represent columns of M . For some Ai → Bj, the weight will be represented
by mij.

Let A = {A1...An} and B = {B1...Bn}. For a given system, Pσ, the weighted (signed) sum
over all vertex-disjoint path systems A→ B is given by paths

A1 → Bσ(1), ..., An → Bσ(n)

The product of each individual weight represents the weight on the system so we have

w(Pσ) = w(A1 → Bσ(1))...w(An → Bσ(n))
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Thus we find, for the matrix M ,

detM =
∑
σ

signσw(Pσ)

Now, we show that it is possible to generalize this result from bipartite to arbitrary graphs,
a result originally shown by Gessel and Viennot.

Consider a finite acyclic directed graph G = (V,E) (in other words, a graph G with no
directed cycles, and where there are a finite number of vertexes and edges contained in G).
Including all trivial paths A → A of length 0, we find that the number of directed paths
between A and B is finite.

Definition 1.2. Let w(e) represent the weight of some edge e. The weight of P where
P : A→ B can be defined as

w(P ) :=
∏
e∈P

w(e)

Note that w(e) = 1 in the case that the length of P is 0.
Now we again consider A = {A1...An} and B = {B1...Bn}, where A represents the columns

of a matrix M = (mij), and B represents the rows of M . Note that A and B need not be
disjoint. We know that

mij :=
∑

P :Ai→Bj

w(P )

As we know, the weight of the path system P (where P is from A to B) is the product of
all the edges in the system. This can also be written as

(1.1) w(P ) =
n∏
i=1

w(Pi)

where P = signσ and there are n paths.
We know that a path system P = (P1, ..., Pn) is vertex-disjoint if the paths of P are

pair-wise vertex disjoint.

Lemma 1.3. Let G = (V,E) be a finite weighted acyclic directed graph, A = A1, ..., An and
B = B1, ..., Bn two n-sets of vertices, and M the path matrix from A to B. Then

detM =
∑

P vertex-disjoint path system

signPw(P )

Proof. As we know, det(M) can be written as

detM =
∑
σ

signσm1σ(1)m2σ(2)...mnσ(n)

This becomes

detM =
∑
σ

signσ(
∑

P1:A1→Bσ(1)

w(P1))...(
∑

Pn:An→Bσ(n)

w(Pn))

From 1.1, we find that, summing over σ

detM =
∑
P

signPw(P )
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Let N be the set of path systems that are not disjoint. In order to prove the statement of
the lemma all we need to do is prove∑

P∈N

signPw(P ) = 0

because this will show that non disjoint paths do not contribute to the determinant. In
order to do this, we define an involution π : N → N with no fixed points which satisfies the
following conditions

w(πP ) = w(P )

signπP = −signP

This would satisfy the statement we need to prove, and hence, the lemma. Let us better
define the involution π. For P ∈ N , with paths Pi : Ai → Bσ(i), we know that some pairs of
paths will intersect (by definition).

Take i0 to be the minimal index where Pi0 shares a vertex with another path, and let the
first of these common vertices be X. Take j0 to be the minimal index such that Pj0 shares
this vertex X with Pi0 and j0 > i0.

We construct a new system πP = P ′
1, ..., P

′
n where when k 6= i0, j0, P

′
k = Pk. The new path

we have constructed P ′
i0 goes from Ai0 to X along Pi0, and then to Bσ(j0) along Pj0. The

path P ′
j0 travels along Aj0 to X along Pj0, continuing to Bσ(i0) along Pi0.

We can see that π(πP ) = P , given that index i0, vertex X, and index j0 remain the same
as before.

So, when we apply π twice, we end up switching back to the original path Pi. Additionally
P and πP have the same edges, so obviously w(πP ) = w(P ). The new permutation σ′ is given
by the multiplication of σ with the transposition (i0, j0), so we can see that signπP = −signP .
This can be generalized for all paths which share at least one vertex with another path
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(making them non-disjoint), and thus for all P ∈ N . Thus, we have proven our statements,
and the lemma. Note that the graph we consider must be acyclic because the involution,
π could transform a self-intersection of the path into an intersection of two distinct paths.
This would break the involution argument. �

The Lindström–Gessel–Viennot lemma can help us to derive all of the basic properties of
determinants through the use of an appropriate graph.

2. Applications

One example of the application of this lemma is in proving the Binet–Cauchy formula for
the determinant of the product of two rectangular matrices.

Theorem 2.1. If P is an r × s matrix and Q an s× r matrix, r ≤ s, then

detPQ =
∑
Z

(detPZ)(detQZ),

where PZ is the r × r submatrix of P with column-set Z, and QZ the r × r submatrix of Q
with the corresponding rows Z.

Proof. We again start by considering a bipartite graph on A and B, relating to a path system
P . Consider also a bipartite graph on B and C, relating to paths Q. We now link these
together to create a new graph between A and C.

We see that for each mij of the path matrix from A to C is mij =
∑

k pikqkj so the matrix
is equivalent to PQ. With vertex disjoint path systems A to C corresponding with A to Z
corresponding with Z to C, the result signσT = (signσ)(signT ) follows from the lemma. �
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