
PROOFS OF IRRATIONALITY & TRANSCENDENCE

ASHWIN RAJAN

1. Abstract

In this paper, we will discuss different techniques for showing that numbers are irrational. We will first
go over some common and simpler proofs, such as a proof that

√
2 is irrational. Then, we will move on to

three main results: proving that en, πn, and A(n) := 1
π arccos ( 1√

n
) are irrational. After we show that these

are irrational, we will move on to a few miscellaneous results that use different techniques than the previous
ones. We will prove that cos 1 and sin 1 are irrational, and also that arccos( 1

n ) is irrational for all natural
n ≥ 3.

2. Preliminary Proofs of Irrationality

Let’s begin by quickly going over a simple example of proving irrationality.

Lemma 2.1.
√

2 is irrational.

This is likely the first proof of irrationality that one will learn, and we will go over the most widely known
proof (sometimes attributed to Aristotle, and other times, to Euclid), as it will help us develop some of the
tools we need for later.

Aristotle’s Proof. Let’s assume, for the sake of contradiction, that
√

2 is rational. Thus, it can be represented
as an irreducible fraction as

√
2 = a0

b0
. Multiplying by b0 on both sides, we get b0

√
2 = a0. Next, we square

both sides to get 2b20 = a2
0. Because there is a coefficient of 2 on the left hand side, a0 must be even. Thus,

let’s substitute a0 = 2a1 into our equation. Now, we have b20 = 2a2
1. This implies that b0 is also even. At

the beginning we said that a0
b0

was irreducible, gcd a0, b0 = 1. However, we clearly have that a0 and b0 are

both even, and thus that gcd a0, b0 ≥ 2. This is a contradiction, and thus, our original assumption that
√

2
is irrational was incorrect. �

This proof appears rather underwhelming at first; it hinges on the irreducibility of a fraction, which hardly
seems to be a proper basis for a proof. One might ask, what if we considered a reducible fraction? Well,
let’s consider this. Every time we substitute, let’s replace (ai, bi) with (ai+1, bi+1). Then, we end up with
a2i = 2b2i for all nonnegative integers i. So, as i tends to ∞, we find that gcd (a0, b0) also tends to ∞ (at an
exponential pace). This also means that a0 and b0 tend to ∞, and thus, no finite values of a0 and b0 can be

chosen to give
√

2 = a
b . Thus,

√
2 cannot be expressed as a fraction, and is therefore irrational.

What can we take away from this example to use in other, harder proofs of irrationality? First, we notice
that we used a proof by contradiction. It is often more difficult (and requiring of more ingenuity) to come
up with a constructive proof. Therefore, we will rely more on proofs that follow this same format: assume
that some irrational number r can be expressed as some fraction, then provide some contradiction to show
that r actually cannot be expressed as a fraction. Let’s put this into action with our next set of proofs.

3. Proof that en is irrational

Let’s work our way up to showing that en is irrational by beginning with some simpler statements regarding
e. Before we begin our proofs, let’s introduce the Taylor Polynomial for ex. This will appear in many of our
following proofs.

Lemma 3.1. The Taylor polynomial for ex is ex = 1 + x+ x2

2 + x3

6 + x4

24 + · · · =
∑∞
n=0

xn

n! .
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Proof. Let’s define the Taylor polynomial for ex to be ex =
∑∞
n=0 anx

n. Differentiating both sides, we get
ex =

∑∞
n=0 nanx

n−1 =
∑∞
n=0 anx

n. Equating coefficients, we get (n + 1)an+1 = an. The explicit form
for this recursion is clearly an = a0

n! . Plugging in x = 0 to our Taylor polynomial to solve for x0, we get

e0 = 1 = a0 because all of the other terms vanish at x = 0. Therefore, an = 1
n! , and we have that the Taylor

polynomial for ex is ex =
∑∞
n=0

1
n! . �

Lemma 3.2. Euler’s number, e, is irrational.

There are several proofs of this, the first of which was Euler’s. He used the fact that e’s continued fraction
representation was infinite to show that it must be irrational. However, we will go over Fourier’s proof, a
proof by contradiction that utilizes the Taylor Series for e.

Fourier’s proof. Let’s suppose, for the sake of contradiction, that e = a
b for integers a, b > 0. This is

equivalent to be = a, and multiplying by n! on both sides, we get n! be = n! a for all n ≥ 0. Why did we

multiply on both sides by n!? Recall that ex =
∑∞
k=0

xk

k! , so e =
∑∞
k=0

1
k! . We will use this to show that the

left hand side of our equation is nonintegral while the right hand side is integral. Looking at the right hand
side of our equation, n! a is clearly integral for all n ≥ 0. However, looking at our left hand side, we have

n! be = bn!

(
1 +

1

1!
+

1

2!

)
+ · · · = bn!

(
1 +

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

)
+ bn!

(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
.

The first term clearly is integral, because when we distribute the n!, all the denominators cancel. We suspect,
however, that the second term is not integral. It turns out that our second term is approximately b

n , and we
can see this by a comparison:

b

n+ 1
<

b

n+ 1
+

b

(n+ 1)(n+ 2)
+

b

(n+ 1)(n+ 2)(n+ 3)
+ · · · < b

n+ 1
+

b

(n+ 1)2
+

b

(n+ 1)3
+ · · · = b

n
.

Therefore, for arbitrarily large n (essentially any n > b + 1), this second term is definitely not integral.
Therefore, for some values of n, the left hand side of the equality is nonintegral and the right hand side of
the equality is integral. This is a contradiction! When we multiplied both sides by n!, we stated that our
new equality must be true for all n; however, we have found some n such that this statement is not true.
Therefore, our initial assumption that e is rational was incorrect; e must be irrational. �

Once again, we have proven irrationality through contradiction. So, are we done? Does this show that

en is irrational? Unfortunately, this is not the case, as that is a much stronger statement. For example,
n
√

2

is irrational for all natural numbers n ≥ 2, but (
n
√

2)n = 2 is rational. Thus, let’s move on to e2, and try to
follow a similar proof as for e, one that J. Liouville wrote in 1840.

Lemma 3.3. e2 is irrational.

Liouville’s Proof. Let’s assume, for the sake of contradiction, that e2 = a
b . Unfortunately, trying e2b = a

doesn’t get us anywhere, but, rearranging to get eb = ae−1 is much more convenient. This is because of the
Taylor Series for en, which gives us

e = 1 +
1

1
+

1

2
+

1

6
+

1

24
+ · · ·

as before, and

e−1 = 1− 1

1
+

1

2
− 1

6
+

1

24
∓ · · · .

Plugging this into our equation, we get

b(1 +
1

1
+

1

2
+

1

6
+

1

24
+ · · ·) = a(1− 1

1
+

1

2
− 1

6
+

1

24
∓ · · ·).

Next, we multiply by n!. Note that our equation must be true for all n; this will be important as we continue
with the proof. This gives us

Z1 + n! b(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·) = Z2 + (−1)n+1n! a(

1

(n+ 1)!
− 1

(n+ 2)!
+

1

(n+ 3)!
∓ · · ·),

where Z1, Z2 ∈ Z. As we had shown in the proof of the irrationality of e, the nonintegral part of the left
hand side is approximately b

n . For large n, the nonintegral part is small, so this means that the left hand
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side overall will be slightly greater than an integer. Now, let’s look at the right hand side of the equation.
The nonintegral part: (−1)n+1n! a( 1

(n+1)! −
1

(n+2)! + 1
(n+3)! ∓ · · ·). We can bound this by

−a
n

< (−1)n+1n! a(
1

(n+ 1)!
− 1

(n+ 2)!
+

1

(n+ 3)!
∓ · · ·) < −a

(
1

n+ 1
− 1

(n+ 1)2
− 1

(n+ 1)3
− · · ·

)
=
−a
n+ 1

(
1− 1

n

)
< 0.

But this means that the nonintegral part of the right hand side is just slightly less than an integer for very
large n. Thus, we have that n! ae−1 is slightly smaller than an integer, and from before, we have that n! be
is slightly larger than an integer for large n, so n! ae−1 = n! be is not true for all n. Because we have reached
a contradiction, our original assumption that e2 is rational is incorrect. �

The most natural next step is to check if e3 is irrational, but playing around with the Taylor series for ex

and rearranging e3b = a gets us nowhere. Possibly looking at e4 would be nicer?

Lemma 3.4. e4 is irrational.

It is indeed easier to deduce that e4 is irrational. However, we cannot immediately jump into the proof
using the same technique as we did in showing that e and e2 were irrational is not going to work. Taking
be2 = ae−2 and multiplying by n!, then taking the nonintegral parts isn’t enough to prove that this equality
is false. In our previous proofs, we picked an arbitrary large n for n!, but in this case, it will be more
convenient to take a large n = 2m and multiply by 2n!

2n . Why 2n? To see why, let’s introduce Legendre’s
theorem.

Lemma 3.5 (Legendre’s Theorem). The number of factors of p in n! is

vp(n! ) = bn
p
c+ b n

p2
c+ b n

p3
c+ · · ·

.

Note that although this looks like an infinite series, it’s actually not. Because of the floors, as soon as
px > n, the rest of the terms become 0.

Proof. For every multiple of p less than or equal to n, we add 1 to vp(n! ) because each of those contributes
one factor of p. The number of multiples of p less than or equal to n is bnp c. We also have to account for

higher powers of p. So, each multiple of p2 less than or equal to n will contribute two factors of p, one of
which was already accounted for. The number of multiples of p less than or equal to n is b np2 c. We follow

the same pattern, adding one for each multiple of a power of p less than or equal to n. This gives us the
series bnp c+ b np2 c+ b np3 c+ · · ·. �

Notice that this theorem only deals with prime numbers. If we have vx(n), with x = pe11 p
e2
2 p

e3
3 · · · p

ei
i ,

then vx(n) = min (
vp1 (n)

e1
,
vp2 (n)

e2
,
vp3 (n)

e3
, . . . ,

vpi (n)

ei
). Now that we have this in mind, what’s so special about

n = 2m? It’s natural to try to find the number of factors of 2 in n!.

Lemma 3.6. The number of factors of 2 in n! if n = 2m is exactly n− 1. The number of factors of 2 in x!
if x 6= 2m is less than x− 1.

Proof. We calculate v2n! = bn2 c + bn4 c + bn8 c + · · ·. Substituting n = 2m, we can remove all the floors up

until b 2m

2m+1 c because all previous values will be integral. Therefore, we have 2m−1 + 2m−2 + 2m−3 + · · · +
4 + 2 + 1 + 0 + · · · = 2m − 1 = n− 1 factors of 2 in n!.

Let’s consider the second part. We have v2x! = bx2 c+ bx4 c+ bx8 c+ · · ·. If x = 2a · n, then b x
2a+1 c < x

2a+1 .
Therefore, bx2 c+ bx4 c+ bx8 c+ · · · < x

2 + x
4 + x

8 + · · · 1 = x− 1. �

This means that multiplying by n!
2n−1 does not have any effect on the parity of either side of the equation.

Now that we are equipped with this information, let’s begin our proof of Lemma 3.3.

Proof of Lemma 3.3. Let’s begin in the same fashion as we did for proving that e2 is irrational. Assume,
for the sake of contradiction, that e4 is rational, and can be expressed as a

b . Then, we have be2 = ae−2. As
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we said previously, it is more convenient to multiply by n!
2n−1 (compared to n! as in previous proofs), with

n = 2m. This gives us

b
n!

2n−1
e2 = a

n!

2n−1
e−2.

As in previous proofs, we substitute using the Taylor Series for e:

e2 = 1 +
2

1
+

4

2
+

8

6
+

16

24
+ · · ·+ 24

r!
+ · · ·

and

e−2 = 1− 2

1
+

4

2
− 8

6
± · · ·+ (−2)r

r!
+ · · · .

For r ≤ n, we have the following summands

b
n!

2n−1

2r

r!
and a

n!

2n−1

(−2)r

r!
.

It is not too difficulty to show that these are integral under our condition that r ≤ n. For the first case, we
have our first expression E1 = b n!

2n−1
2r

r! , and counting factors of 2, we have that vp(E1) ≥ (n− 1)− (n− 1) +

r − (r − 1) = 1. The same thing is true for E2 = a n!
2n−1

(−2)r

r! (because the only thing that’s changed is a
factor of (−1)n, and the arbitrary coefficient was changed from b to a). Now, let’s consider the nonintegral
parts of both sides of our equation. The left hand side of our equation has nonintegral part for r ≥ n + 1,
which is

2b

(
2

n+ 1
+

4

(n+ 1)(n+ 2)
+

8

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

)
.

Using our same bounding from before, we get that for large n, this is very close to 4b
n . For large n, this is a

very small positive number. Next, we consider the right hand side of our equation for r ≥ n+ 1, which is

2a

(
− 2

n+ 1
+

4

(n+ 1)(n+ 2)
− 8

(n+ 1)(n+ 2)(n+ 3)
± · · ·

)
.

Using our same bounding from before, this is very close to − 4a
n . For large n, this is a very small negative

number. Therefore, our left hand side is slightly larger than an integer for large n, and our right hand side is
slightly smaller than an integer for large n. Therefore, both sides can’t be equal and we have a contradiction.
Thus, our original assumption that e4 is rational was incorrect, so e4 must be irrational. �

Unfortunately, as we found before, manipulations aren’t enough to show that e3 is irrational. The same
is true for odd powers of e. After all, doing e2x+1 = a

b and manipulating it to bex+1 = ae−x isn’t really
helpful, because the powers on each side are uneven. However, Charles Hermite discovered an idea to prove
that these odd powers of e are irrational, which in fact is able to generalize to all rational powers of e.

Theorem 3.7. er is irrational for all rational r.

We can’t directly prove this; we must first introduce the following function, which as a few useful prop-
erties.

Lemma 3.8. For some fixed n ≥ 1, define

f(x) =
xn(1− x)n

n!
.

(1) The function f(x) is a polynomial of the form f(x) = 1
n!

∑2n
i=n cix

i, where the coefficients ci are
integers.

(2) For 0 < x < 1 we have 0 < f(x) < 1
n! .

(3) The derivatives f (k)(0) and f (k)(1) are integers for all k ≥ 0.

Proof. It is evident that the numerator of our function will have integer coefficients on all the terms when
expanded, because the coefficients in each multiplicand is integral. The only thing that our first statement
says other than that is that, when expanded, our expression contains terms of degree n to 2n. When (1−x)n

is expanded, the terms have degree 0, 1, 2, . . . , n− 2, n− 1, n. Thus, when each of these terms are multiplied
by xn, the degrees become n, n+ 1, n+ 2, . . . 2n− 2, 2n− 1, 2n.

The numerator is (x − x2)n. This is maximized when x − x2 is maximized. We have x − x2 = −(x −
0.5)2 + 0.25, which means that there is a maximum at 0.5. Therefore, we have that the maximum is 1

4nn! .
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The minima are at x = 0 and x = 1, as f(x) = 0 there, and all values of f(x) for 0 ≤ x ≤ 1 are nonnegative.
Therefore, for 0 < x < 1 we have 0 < f(x) < 1

4nn! <
1
n! .

Because all the terms in our function have degree d : n ≤ d ≤ 2n as shown in in part 1, if 0 ≤ k ≤ n− 1,
each term will have a factor of x in it, meaning that the kth derivative will vanish at 0. The same is true
for 2n + 1 ≤ k, as the kth derivative will then universally be 0. Then, in the range n ≤ k ≤ 2n, the kth
derivative at 0 will be f(k)(0) = k!

n!ck. Since ck is an integer, and k ≥ n, this is integral for all k.Next, let’s

examine f (k)(1). Using the handy fact that f(x) = f(1−x), we get f (k)(x) = (−1)kf (k)(1−x). This means
that f (k)(1) = (−1)kf (0), and since we have shown that f(k)(0) is integral for all k, f(k)(1) is also integral
for all k.

�

With this lemma, we are now ready for our culminating proof of irrationality of powers of e.

Proof of Theorem 3.7. Let’s assume, for the sake of contradiction, that e
s
t = p

q for integral s and t. If e
s
t is

rational, then so is (e
s
t )t = es. Therefore, it is enough to show that es cannot be rational for any integer s.

Now, assume for the sake of contradiction that es = a
b for integers a, b ≥ 0, and (this will become important

later) n that is large enough such that n!> as2n+1. Now, define

F (x) := s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x)∓ · · ·+ f (2n)(x),

where f(x) is the function defined in Lemma 3.7. Since f (k)(x) = 0 for k > 2n, we can rewrite F (x) as an
infinite sum:

F (x) = s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x)∓ · · · .
This infinite series gives us that

F ′(x) = −sF (x) + s2n+1f(x).

We introduce a factor of esx to get esxF (x). Differentiating using the product rule and our equation above
gives us

d

dx
[esxF (x)] = sesxF (x) + esxF ′(x) = s2n+1esxf(x).

Let’s define

N := b

∫ 1

0

s2n+1esxf(x)dx = b[esxF (x)]10 = besF (1)− bF (0) = aF (1)− bF (0).

We know that this is an integer, because f (k)(1) and f (k)(0) are integers for all integral k ≥ 0, from part 3
of Lemma 3.7 (and since F (x) is the sum of several of these multiplied by integers). Using part 2 of Lemma
3.7, we have that

0 < N = b

∫ 1

0

s2n+1esxf(x)dx < bs2n+1es
1

n!
=
as2n+1

n!
< 1,

because of our condition on n when we introduced it. This shows thatN cannot be an integer, a contradiction,
meaning that our original assumption, that es for s ∈ Z can be rational, is incorrect. Because es for integral
s cannot be rational, neither can er for rational r. �

Before we continue, let’s introduce a few key terms:

Definition 3.9 (Algebraic Number). An Algebraic Number is a complex number which is a solution of some
nonzero, single-variable polynomial.

(1)
√

2 is an Algebraic Number, because it is a solution of x2 − 2 = 0.
(2) i =

√
−1 is an Algebraic Number, because it is a solution of x2 + 1 = 0.

(3) a+ bi is Algebraic Number, because it is a solution of x2 − a2 − b2 = 0.

Definition 3.10 (Transcendental Number). A Transcendental Number is a number that is not Algebraic
over .

(1) e is a Transcendental Number because it is not a solution to any nonzero, single-variable polynomial.
(2) Similarly, log 21 is a Transcendental Number.

1Although this statement is also true in base-10, note that all civilized mathematicians use log as the natural logarithm.
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However, claiming that er is irrational for all rational r is not the strongest claim we can make; e is
in fact transcendental (if you don’t see why this is stronger, consider 2 +

√
3). Proofs that numbers are

transcendental are in general very difficult; the first proof that a number is transcendental was of e, in 1873
by Hermite.

Theorem 3.11. e is a Transcendental Number over Q.

Let’s go over Hermite’s proof, but before, let’s go over a quick lemma.

Lemma 3.12. The nth derivative of h(x) = f(x)g(x) is h(n)(x) =
∑n
i=0

(
n
i

)
f (i)(x)g(n−i)(x).

Proof. Let’s do a proof by induction. Beginning with our base case, which we’ll consider to be n = 1, we get
that h′(x) = f ′(x)g(x) + f(x)g′(x) by the product rule. This works out with our formula. Next, assuming
that h(n)(x) =

∑n
i=0

(
n
i

)
f (i)(x)g(n−i)(x) is true, let’s differentiate again with respect to x. We get

h(n+1)(x) =

n∑
i=0

[

(
n

i

)
f (i+1)(x)g(n−i)(x) +

(
n

i

)
f (i)(x)g(n−i+1)(x)].

Rearranging terms gives us the equivalent sum:

n+1∑
i=0

(f (i)(x)g(n+1−i)(x))(

(
n

i

)
+

(
n

i− 1

)
) =

n+1∑
i=0

(
n+ 1

i

)
f (i)(x)g(n+1−i)(x),

which completes the inductive step. �

Hermite’s Proof of Theorem 3.10. Suppose, for the sake of contradiction, that e is algebraic. Then, we have
ame

m + · · ·+ a1e+ a0 = 0, with ai ∈ Z, and a0, am 6= 0. Define

j(x) =
xp−1(x− 1)p(x− 2)p · · · (x−m)p

(p− 1)!
,

where p is some unspecified prime. Furthermore, define

J(x) := j(x) + j′(x) + · · ·+ j(mp+p−1)(x).

Because j(x) has degree mp+p−1, the dth derivative wtih d > mp+p−1 vanishes. We can thus write J(x)

as an infinite series J(x) = j(x) + j′(x) + j′′(x) + · · ·. For 0 < x < m, |j(x)|≤ mp−1mpmp···mp

(p−1)! = mmp+p−1

(p−1)! .

We also note that for −m < x ≤ 0, |j(x) ≤ (2m)p−1(2m)p···(2m)p

(p−1)! = (2m)mp+p−1

(p−1)! J(x) also has the convenient

property that
d

dx
[e−xJ(x)] = e−x[J ′(x)− J(x)] = −e−xj(x)

because e−x[J ′(x)− J(x)] telescopes. Using this fact, we have

as

∫ s

0

e−xj(x)dx = as[−e−xJ(x)]s0 = asJ(0)− ase−sJ(s).

We want to cancel out the e−s, so we multiply by es to get esasJ(0) − asJ(s). Now, we sum over s =
0, 1, 2 . . . ,m to get

m∑
s=0

ase
s

∫ s

0

e−xj(x)dx =

m∑
s=0

ase
sJ(0)− asJ(s) =

m∑
s=0

ase
sJ(0)−

m∑
s=0

asJ(s).

The first sum is simply 0, because at the beginning of this proof, we had ame
m + · · · + a1e + a0 =

0. This leaves us with −
∑m
s=0 asJ(s). Substituting J(x) = j(x) + j′(x) + · · · + j(mp+p−1)(x), we get

−
∑m
s=0

∑mp+p−1
i=0 asj

(i)(s). We claim that j(i)(s) is an integer, and is divisible by p when s = 0 and
i = p− 1. Let’s handle the easy cases first, then move on to the harder one; we know that the degree of the
terms of j(x) range from p− 1 to mp+ p− 1. So, for j(i)(s) where 0 < i < p− 1, there is always at least one
factor of x(x− 1)(x− 2) · · · (x−m) and since s is an integer 0 ≤ s ≤ m, that means that the ith derivative
in this case is 0. Next, because the degree of j(x) is mp+ p− 1, j(i)(x), where i ≥ mp+ p, must be 0 for all
x. So far, all of our expressions have evaluated to 0, which is a multiple of p. Lastly, we must deal with the
case of j(i)(s), where p− 1 ≤ i ≤ mp+ p− 1. Notice that we have a special case when i = p− 1 and s = 0,
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because there are only p − 1 copies of x in j(x). We will consider this case after the others. Let’s consider
each s separately. We, by Lemma 3.11, have that

j(i)(s) =

i∑
y=0

(
i

y

)
q(y)(s)

(p− 1)!
g(i−y)(s),

where q(x) = ((x− s)p) and

g(x) := xp−1(x− 1)p · · · (x− s− 1)p(x− s+ 1)p · · · (x−m)p.

Because the rth derivative of (x − s)p at x = s is 0 when 0 ≤ r < p, every term of our summation except

the last cancels out, and we are left with
(
n
n

) q(p)(s)
(p−1)! g(s) = pg(s). Since g(s) is the product of the pth power

of several integers, g(s) is definitely an integer, and our result is a multiple of p when i 6= p− 1 or s 6= 0.
Now, let’s look at our special case of i = p − 1 and s = 0. By Lemma 3.11, we have that j(p−1)(0) =∑p−1
y=0

(
p−1
y

) q(y)(0)
(p−1)! g

(i−y)(0). Similarly to our previous cases, we have that the only term that is nonzero is

the last term, because q(r)(0) = 0 for 0 ≤ r < p − 1. Then, we are left with the equivalent expression(
p−1
p−1

) q(p−1)(0)
(p−1)! g(0), which simplifies nicely to g(0). This gives us j(p−1)(0) = (−1)p(−2)p(−3)p · · · (−m)p. We

now choose p to be larger than m, so that this product cannot have a factor of p in it. Now, as p tends to∞,
the magnitude of the right-hand side grows arbitrarily large, but more importantly, is nonzero. Meanwhile,

the for −m < x < m, |j(x)|≤ (2m)mp+p−1

(p−1)! , so as p tends to ∞, |j(x)| tends to 0 from −m < x < m, so j(x)

becomes, essentially, a straight line around x = 0, meaning that j(p−1)(0) tends to 0. This is a contradiction,
as for arbitrarily large p, the left-hand side approaches 0, and the right-hand side approaches ∞. Because
we have reached a contradiction, our original assumption, that e is an algebraic number, must have been
incorrect, and thus, e must be a transcendental number. �

This was a pretty involved proof, but why did we do it? The proof of e being transcendental actually has
some applications, one of which we will discuss later, being the irrationality of log 2.

4. Irrationality of π2

Although the equation C = πd2 is extremely well known, the proof that C and d are incommensurable is
actually nontrivial, and not very well-known. Let’s go through Ivan Niven’s proof of π’s irrationality, which
is interestingly very similar in structure to the proof that er is irrational for all rational r.

Lemma 4.1. π is irrational.

Before we begin with this proof, we need to introduce a function with some specific properties.

Lemma 4.2. Define g(x) := xn(a−bx)n

n! , where a and b are integers greater than 0. Then,

(1) n! g(x) has integral coefficients, and has terms of degree greater than or equal to n.
(2) g(x) and g(i)(x) have integral values for x = 0 and x = a

b .

Proof. The first part of the lemma is simple: the degrees of the terms are d : n ≤ d ≤ 2n, and the coefficients
are of the form (−1)n−m

(
n
m

)
ambn−m, which must be integral.

The second part of the lemma is nontrivial. We know that g(0) = 0, and g(ab ) = 0. We also know that

for all 0 < i < n, g(i)(x) has a factor of x(a − bx), so g(i)(0) = 0 and g(i)(ab ) − 0 for 0 < i < n. Because,

as we stated in the first part of the lemma, the degree of g(x) is 2n, g(i)(x) = 0 for i > 2n for any x. We
are left with the case of g(n+i)(x) where 0 ≤ i ≤ n. To show that this is integral, let’s find an explicit form
for g(i+n)(0). This requires finding the term with degree i+ n (as all other terms will vanish at the i+ nth
derivative and when x = 0). This term will be(

n
i

)
(a2n−i)(−b)ixi

n!
,

2The correct equation is C = rτ , but unfortunately, mathematicians have not fully embraced the superior circle constant yet.

Please do your part to give τ the recognition it deserves.
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and the ith derivative of this with respect to x is(
n
i

)
(an−i)(−b)ixi+n

n!
.

The i+ nth derivative of this (with respect to x) is(
n

i

)
(an−i)(−b)i (i+ n)!

n!
,

which is clearly an integer. Since g(x) = g(ab − x), both g(k)(0) (what we just showed), and g(k)(ab ) are
integers for all nonnegative integers k. �

Now that we have our function, we are ready to move on to the proof of π’s irrationality.

Niven’s proof. Let’s assume, for the sake of contradiction, that π = a
b , where 0 < a, b ∈ Z. We define the

following polynomial:

G(x) := g(x)− g(2)(x) + g(4)(x)− · · ·+ (−1)ng(2n)(x)

for some constant n. We know that n! g(x) = xn(a − bx)n (note that these are the same a, b from the
numerator and denominator of π) has integral coefficients, and all of its terms have degree d : d ≥ n from
Lemma 4.2. We also have that the derivatives g(i)(x) have integral values for x = 0 and x = a

b = π. Taking
the derivative of G′(x) sinx−G(x) cosx, we get

d

dx
[G′(x) sinx−G(x) cosx] = G′′(x) sinx+G(x) sinx = g(x) sinx.

Because of this nice cancellation, we have

A =

∫ π

0

g(x) sinxdx = [G′(x) sinx−G(x) cosx]π0 = G(π) +G(0).

Since g(i)(0) and f (i)(π) are integers, so is G(π) and G(0), and thus, their sum. We have (G(π) + F (0)) ∈
Z. We also have that for 0 < x < π, and for some n large enough that πnan

n! < 1, 0 < g(x) sinx <
max (xn)·max ((a−bx)n)·max (sinx)

n! < 3 πnan

n! < 1. Therefore, A is both integral and between 0 and 1 exclusive,
a clear contradiction. Because we have reached a contradiction, our initial assumption, that π is rational,
must be incorrect. �

We’ve shown that π is irrational. However, as we’ve stated before, it is stronger to say that x2 is irrational
than to say that x is irrational. In fact, the proof that π2 is irrational shockingly similar to the proof that
er is irrational because it utilizes the same equation

f(x) =
xn(a− bx)n

n!

from before.

Theorem 4.3. π2 is irrational.

Proof. Assume, for the sake of contradiction, that π2 is irrational and can be expressed as a
b for integers

a, b > 0. We will now define the polynomial

H(x) := bn
(
π2nf(x)− π2n−2f (2)(x) + π2n−4f (4)(x)∓ · · ·

)
,

4 which satisfies H ′′(x) = −π2H(x) + bnπ2n+2f(x). From part 3 of Lemma 3.7, we have that H(0) and
H(1) are integers (if this is not immediately obvious, try plugging in π2 = a

b ). Differentiating by using the
product rule gives us

d

dx
[H ′(x) sinπx− πH(x) cosπx] = (H ′′(x) sinπx+ πH ′(x) cosπx− πH ′(x) cosπx+ π2H(x) sinπx

= sinπx(H ′′(x) + π2H(x)) = bnπ2n+2f(x) sinπx

3Note that this is not less than or equal to because our range is from 0 to π, exclusive
4This is the same function f(x) that was defined in Lemma 3.7.
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per our differential equation above. Plugging in a = bπ2, we get that this simplifies to π2anf(x) sinπx.
Using this, we get

M := π

∫ 1

0

anf(x) sinπxdx = [
1

π
H ′(x)sinπx− F (x) cosπx]10,

which simplifies to F (0) + F (1) because sin 0 = 0, sinπ = 0, cos 0 = 1, and cosπ = −1. We know that
M is a positive integer, because F (0) and F (1) are integers (a result that follows from Lemma 3.7), and
because M is the integral of a function that is positive, except on the boundary. From part 2 of Lemma
3.7, we have that and since we can always choose n to be large enough such that πan

n! < 1, we have

0 < M = π
∫ 1

0
anf(x) sinπxdx < πan

n! < 1. This is a contradiction, because we have that M is integral, but
also that it is between 0 and 1 exclusive. Because we have reached a contradiction, our initial assumption,
that π2 is rational, must have been incorrect. �

Interestingly, π2’s irrationality has some important applications. Let’s consider the following:

Corollary 4.4. There are infinitely many prime numbers.

There is a quick proof of this using π2’s irrationality.

Proof. When we see π2, the first thing that should pop into our mind is
∑∞
n=1

1
n2 = π2

6 . Because of
the fundamental theorem of arithmetic, all positive integral n can be expressed as the product of primes
(including 1, which is the product of 0 primes). This gives us

∞∑
n=1

1

n2
=

∏
p prime

(1 +
1

p2
+

1

p4
+ · · ·) =

∏
p prime

p2

p2 − 1

. Assume, for the sake of contradiction, that there are finitely many primes. The product of finitely many

rational numbers is necessarily a rational number, so
∏

p prime
p2

p2−1 must be rational. However, we know

that it is equal to π2

6 , which is irrational. This is a contradiction, and thus, our original assumption that
there are only finitely many primes was incorrect. �

Now, we have shown that π2 is irrational. However, how do we know it’s not the cube root, or even
the nth root of some rational number r. We can show this is true by proving that π is transcendental,
or not algebraic. However, this proof requires the use of the Lindemann-Weierstrass Theorem, which is
far beyond the scope of this paper. We will go over a proof of π being transcendental by assuming the
Lindemann-Weierstrass Theorem to be true. Before we introduce the Lindemann-Weierstrass Theorem, we
need to define a few terms.

Definition 4.5 (Linearly Independent). Several vectors v1, v2, . . . , vn are said to be Linearly Independent
if C1v1 + C2v2 + · · ·Cnvn = 0 if and only if Ci = 0 for all 1 ≤ i ≤ n.

Definition 4.6 (Algebraically Independent). Given a field K, and A, a K-algebra, elements y1, y2, y3, . . . , yn
are algebraically independent over K if there are no polynomial relations F (y1, y2, y3, . . . , yn) = 0 with
coefficients in K.

Lemma 4.7 (Lindemann-Weierstrass Theorem). If α1, . . . , αn are algebraic numbers that are linearly inde-
pendent over the rational numbers Q, then eα1 , . . . , eαn are algebraically independent over Q.

We will also need to introduce a few more terms before we begin our proof of π being transcendental.

Definition 4.8 (Symmetric Polynomial). A symmetric polynomial is a function that remains unchanged
no matter the permutation of the inputs. Equivalently, f is a symmetric polynomial if f(x1, x2, . . . , xn) =
f(y1, y2, . . . , yn) where y1 = xΠi, where Pi is an arbitrary permutation on 1, 2, . . . , n.

Example. One example of a symmetric polynomial is xy + x + y, as if y is assigned to x and x is assigned
to y, the expression remains the same.

Now that we’ve introduced what a symmetric polynomial is, we are ready to define the more pertinent
Elementary Symmetric Polynomials.

Definition 4.9 (Elementary Symmetric Polynomial). An elementary symmetric polynomial on n variables
is ek(X1, X2, . . . , Xn) =

∑
1≤j1<j2<···<jk≤nXj1Xj2 · · ·Xjk .
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This may look familiar to you; these are essentially the expressions you get in Vieta’s formulas if the
leading coefficient is 1.

Lemma 4.10 (Fundamental theorem on symmetric functions). Any symmetric polynomial can be expressed
in terms of the elementary symmetric polynomials.

Proving this lemma is beyond the scope of this paper, so we will take this theorem to be true.5

Theorem 4.11. π is a transcendental over Q.

Proof. Suppose, for the sake of contradiction, that π is algebraic, and thus satisfies an algebraic equation
with coefficients in Q. Because the set of algebraic numbers is closed over multiplication, πi is also algebraic,
and thus is the root of an algebraic equation with integral coefficients θ1(x) = 0, which has solutions
α1 = iπ, α2, α3, . . .. Using Euler’s identity eiπ + 1 = 0, we have that

(eα1 + 1)(eα2 + 1) · · · (eαn + 1) = 0.

Now, we construct an algebraic equation with integral coefficients whose roots are the exponents in the
expansion of our previous equation. First, let’s consider the exponents ai + aj , with i 6= j. By Vieta’s
formulas in combination with the fact that θ1(x) must have integral coefficients, we know that the elementary
symmetric functions of α1, α2, . . . , αn are rational numbers (not necessarily integral, because the leading
coefficient might be greater than 1). Therefore, the quantities of the form ai + aj are the roots of θ2(x) = 0,
an algebraic equation with integral coefficients. Similarly, we sum the αs taken three at a time, providing
the

(
n
3

)
roots of θ3(x) = 0. We continue along the same pattern to get θ4(x) = 0, θ5(x) = 0, . . . , θn(x) = 0,

all algebraic equations with integral coefficients, whose roots are the sums of the αs taken 4, 5, . . . , n at a
time respectively. The product of all of these equations is θ1(x)θ2(x) · · · θn(x) = 0, which has roots that are
the exponents in the expansion of (eα1 + 1)(eα2 + 1) · · · (eαn + 1). Deleting any roots at x = 0 gives us

θ(x) = cxr + c1x
r−1 + · · ·+ cr,

whose roots are β1, β2, β3,. . . , βr, the nonvanishing exponents in the expansion of (eα1 +1)(eα2 +1) · · · (eαn +
1). Therefore, we can expand this expression to get eβ1 + eβ2 + · · ·+ eβr + k = 0, where k is some positive
integer. Let’s define

f(x) :=
csxp−1(θ(x))p

(p− 1)!
,

where s = rp− 1, and p is a prime that is to be specified. We also define

F (x) := f(x) + f (1)(x) + f (2)(x) + · · ·+ f (s+p+1)(x),

noting that the derivative of e−xF (x) is −e−xf(x). Thus, we have

e−xF (x)− e0F (0) =

∫ π

0

−e−ξf(ξ)dξ.

Now, we substitute ξ = τx, to get

F (x)− exF (0) = −x
∫ 1

0

e(1−r)xf(τx)dτ.

Summing x over our roots β1, β2, . . . , βr, we get
r∑
j=1

F (βj) + kF (0) =

r∑
j=1

βj

∫ 1

0

e(1−r)βjf(τβj)dτ.

From our definition of f(x), we can see that
r∑
j=1

f (t)(βj) = 0

for 0 ≤ t < p because there will always be a copy of θ(x) in the numerator of f (t) for t in the stated range.
We also know that (p − 1)! f(x) has integral coefficients. Because the product of p consecutive integers is
divisible by all of 1, 2, 3, . . . p and thus p!, pth and higher derivatives of (p − 1)! f(x) are polynomials in x

5Domenico Senato’s ”A Bijective Proof of the Fundamental Theorem on Symmetric Functions” article provides an alternative

proof that does not require Abstract Algebra.
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that have integral coefficients divisible by p!. This means that the pth and higher derivatives of f(x) have
integral coefficients which are all divisible by p. We also know, from the definition of f(x) that all of the
coefficients are also divisible by cs. Thus, for t ≥ p, the quantity f (t)(βj) is a polynomial in βj of degree at
most p−1+pr = s, each of whose coefficients is divisible by pcs. A symmetric function of β1, β2, . . . , βr with
integral coefficients and of degree at most s is an integer (because these are the roots of a polynomial with
integral coefficients) provided each coefficient is divisible by cs, by the fundamental theorem on symmetric
functions. Therefore, the symmetric function

∑r
j=1 f

(t)(βj) = pkt, for t = p, p+ 1, p+ 2, . . . , p+ s, where the

kt are integers. It follows that
∑r
j=1 F (βj) = p

∑p+s
t=p kt. Now, to finish proving that

∑r
j=1 F (βj) + kF (0)

is a nonzero integer, we must show that kF (0) is an integer that is not a multiple of p. We know from the
definition of f(x) that

f (t1)(0) = 0, f (p−1)(0) = cscpr , f
(t2)(0) = pKt2 ,

where t1 = 0, 1, 2 . . . , p − 2, t2 = p, p + 1, . . . , p + s, and Kt2 are integers. If p is chosen to be greater than
any of c, cr, k, then cscpr 6≡ 0 (mod p). Therefore,

∑r
j=1 F (βj) + kF (0) is a nonzero integer. Now, the right

hand side of the same equation is
r∑
j=1

βj

∫ 1

0

e(1−r)βjf(τβj)dτ

, which is a finite sum whose terms can each be made arbitrarily small by making p arbitrarily large.
Therefore, we have that the left hand side is a nonzero integer, but the right hand side is very close to 0
for large p, a contradiction. Because we have reached a contradiction, our original assumption, that π is
algebraic, must have been incorrect. �

We have shown that π is transcendental, but why do we care? Algebraic numbers have clear applications
with functions, but transcendental numbers are negatively defined, as in they are defined to strictly not have
some property. Therefore, their applications are less obvious, but π being transcendental does have some
important applications. For example:

Corollary 4.12. Given a straightedge and a compass, we cannot construct a circle and a square with the
same area.

This problem is colloquially known as ”Squaring the Circle,” and is suprisingly nontrivial, requiring a few
important steps. We will not go over the full proof, but we will go over a sketch of some important Lemmas
and the overall structure of the proof. First, we need to figure out which numbers are constructible, and
define exactly what those are!

Definition 4.13 (Constructible number). A number n is said to be constructible if, given a straightedge
and a compass, and knowing the length of 1 unit, we can construct a straight line that is n units long.

The idea of a constructible number is very simple, but finding all the operations the set of constructible
numbers is closed on is tricky, and proving that those are the only operations is extremely difficult.

Lemma 4.14. The constructible numbers are only closed over addition, subtraction, multiplication, division,
and square roots.

We will not go through a rigorous proof, but we will give an explanation of how to achieve each of these
operations.

Proof. Addition and subtraction are clear; we simply use our straightedge to add/remove values to/from
each other. Multiplication and division are a little trickier, but still quick to find—we take similar triangles
to create ratios. The square root is where the compass comes in. We draw a circle with radius a + 1, then
draw a chord perpendicular to the diameter to divide the diameter into lengths of a and 1. The chord’s

length is n By power of a point, we have that n2

4 = a, and thus that n
2 =

√
a. The chord is split in two

evenly, so each of the halves has length
√
a. �

Below are diagrams of how to find show that the constructible numbers are closed over square roots,
multiplication, and division (as addition and subtraction are trivial).
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The following lemma requires abstract algebra to prove, so we will take it to be true, and continue with the
sketch of the proof.

Lemma 4.15. All constructible numbers are algebraic over Q,

Taking this to be true, we have a circle with area πr2, and without loss of generality, let r = 1. Therefore,
we need to construct a square with area π, and thus side length

√
π. Because π is transcendental,

√
π must be

too (if
√
π were a root of some polynomial P (x), then π would be a root of P (

√
x), which can be manipulated

to have terms of integral degree). Since
√
π is transcendental, it is not constructible, a according to our

lemma above. Therefore, we cannot ”Square the Circle.” Interestingly, it took nearly 2000 years since the
problems introduction (in approximately 200 BC, by the Greeks) to prove that that squaring the circle is
impossible. Despite the fact that many had conjectured that it was impossible over the previous years, the
proof hinged on the fact that π is transcendental, which was only proven in 1882 by Lindemann.

The following final theorem about π is trivial with the information we have now.

Theorem 4.16. πr is irrational for all rational r.

Unlike er, there are not many proofs that πr is irrational for rational r that do not rely on π being
transcendental. However, with this fact, our proof is very simple.

Proof. For the same reason as in our proof of er, proving that πr is irrational is equivalent to proving that
πz is irrational for integers z, which is equivalent top roving that π|z|, as if πz is irrational, then so is π−z.
Because π is transcendental, there is no q(π)z = p, with integers q, p, and z. Therefore, there is no πz = p

q ,

and thus, πz is irrational, and so is πr. �

In general, this type of proof is not optimal; taking a stronger claim and apply it to show that our
statement is true is a very backward train of thought. When avoidable, we do not use this type of proof.

5. Miscellaneous Proofs of Irrationality

The first proof we will discuss is regarding inverse cosine, which is relatively simple.

Theorem 5.1. For every odd integer n ≥ 3, the number

A(n) :=
1

π
arccos

(
1

n

)
is irrational.

We know that A(2) = 1
4 and A(4) = 1

3 , so we have to restrict our result to odd numbers.

Proof. We will use the sum-to-product formula for cosine:

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

.

Using α = (k + 1)φ and β = (k − 1)φ yields

cos(k + 1)α = 2cosφ cos kφ− cos (k − 1)φ.
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Taking φn = arccos ( 1√
n

), which clearly has cosφn = 1√
n

, under the domain 0 ≤ φn ≤ π. We have that

cos kφn =
An
√
n
k

defines a sequence Ak. We claim that Ak is a sequence of integral values, where no Ai is divisible by n.
Let’s look at the first few terms of our sequence. For k = 0, we have cos 0 = A0

= 1, and for k = 1, we have

cosφn = A1√
n

, which yields A1 = 1 because cosφn = 1√
n

. Using our recurrence from before,

cos(k + 1)α = 2cosφ cos kφ− cos (k − 1)φ,

we get

cos(k + 1)αn =
2√
n

Ak
√
n
k
− Ak−1
√
n
k−1

=
2Ak − nAk−2
√
n
k+1

.

Because the left hand side cos (k + 1)φn = Ak+1√
nk+1 , we get Ak+1 = 2Ak−nAk−1. For odd n (so the coefficient

of 2 does not complicate things), Ak must be a multiple of n for Ak+1 to be a multiple of n. Since A(1) = 1
is not a multiply of any odd n ≥ 3, Ai is not a multiple of n and must be integral for all i because our
recurrence has integral coefficients. Now, let’s assume, for the sake of contradiction, that

A(n) =
1

π
φn =

k

`
for integers k, ` > 0. Then, clearing denominators gives us `φn = kπ. Taking the cosine of both sides, we get

cos kπ =
A`
√
n
`
.

The left hand side is ±1, so
√
n
`

= ±A` is an integer, with ` ≥ 2, which rearranges to get ±A`

n =
√
n
`−2

,
which is an integer. This means that A` has at least on factor of n, a contradiction (as we deduced that Ai
is not a multiple of n for any i because of the recurrence relation). Because we reached a contradiction, our
assumption that A(n) is rational is incorrect; A(n) is irrational. �

Whenever we prove something, especially something solitarily, it’s important to ask ”Why?” Why do
we care about this result? Indeed, A(n)’s irrationality does have some important applications, particularly
to Hilbert’s third problem. In particular, this lemma is one of the key steps to showing that a regular
tetrahedron cannot be equidecomposible with a cube.

Lemma 5.2. For positive integers m1, n1 and integer k, m1 arccos 1
3 = n1

π
2 + kπ has no solutions.

Proof. We know that arccos 1
3 6=

pπ
q by our proof of A(n)’s irrationality. Isolating arccos 1

3 , we get

arccos
1

3
=

π

m1
(0.5n1 + k)).

This is a contradiction, because since m1, n1 ∈ Z, we have a representation of arccos 1
3 in terms of pπq , which

is impossible. Therefore, there must be no solutions (m1, n1, k). �

Although A(n) seemed like a rather specific function, its irrationality is actually applicable to other
problems! Let’s continue with some proofs regarding when sin and cos are irrational.

Let’s first consider a few basic cases, then work our way up. Before we begin, however, we need to find
the Taylor polynomial for sinx (and we can simply differentiate it to get the Taylor polynomial for cosx.

Lemma 5.3. The Taylor polynomial for sinx is
∑∞
n=0

(−1)nx2n+1

(2n+1)!

Proof. Define the Taylor polynomial to be sinx =
∑∞
n=0 anx

n. We know that

sin(1)(x) = cosx, sin(2)(x) = − sinx, sin(3)(x) = − cosx, sin(4)(x) = sinx,

so differentiating our Taylor polynomial four times, we get sinx =
∑∞
n=0 anx

n = sin(4)(x) =
∑∞
n=0 ann(n−

1)(n−2)(n−3)xn−4. Equating coefficients gives us an = an+4(n+4)(n+3)(n+2)(n+1). So, we have a4x+k =
k!ak
(4x)! for 0 ≤ k ≤ 3. Now, let’s consider our base cases sinx, sin(1)(x) = cosx, sin(2)(x) = − sinx, sin(3)(x) =

− cosx at x = 0. All the terms except the constant a0 vanish in our first case, so we get sin 0 = 0 = a0.
Next, we get sin′(x)x=0 = cos 0 = 1 = a1. Continuing, we get sin(2)(x)x=0 = − sin 0 = 0 = 2a2, and thus
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a2 = 0. Finally, we have sin(3)(x)x=0 = − cos 0 = −1 = 6a3, so a3 = −1
6 . Our initial conditions give us that

the Taylor polynomial for sinx is
∑∞
n=0

(−1)nx2n+1

(2n+1)! . �

Corollary 5.4. The Taylor polynomial for cosx is
∑∞
n=0

(−1)nx2n

(2n)!

Proof. This is trivial given the Taylor polynomial for sinx. Simply differentiate both sides of sine’s Taylor

polynomial and we get
∑∞
n=0

(−1)nx2n

(2n)! . �

Now that we have introduced the Taylor polynomials for sinx and cosx, we are ready to move onto our
first proof.

Lemma 5.5. The value sin 1 is irrational6.

The way we will go about proving this is by using the Taylor Series for sinx at x = 1, and showing that
multiplying by (2n+ 1)! for any n cannot yield an integral result.

Proof. Assume for the sake of contradiction, that sin 1 = p
q . Let’s plug in x = 1 to our Taylor Polynomial to

get
∑∞
n=0

(−1)n

(2n+1)! . This gives us 1
1! −

1
3! + 1

5! ∓ · · ·. Let’s multiply this by (2n+ 1)!, where n is large enough

that (2n+1)!
q ∈ Z. Multiplying, we get

Z1 +

∞∑
i=0

(−1)n+i+1 (2n+ 1)!

(2n+ 3 + 2i)!
,

where Z1 ∈ Z. Let’s examine

0 < |A|= |
∞∑
i=0

(−1)n+i+1 (2n+ 1)!

(2n+ 3 + 2i)!
|< 2n+ 1

2n+ 3
<

1

(2n+ 3)(2n+ 2)
< 1.

Since we have that the absolute value of the fractional part of our sum is bounded by 0 < |A|< 1, we have
that (2n+ 1)! sin 1 = (2n+ 1)! pq = Z2p = Z1 ± |A| for Z2 ∈ Z. Therefore, we have an integer, Z2p, is equal

to Z1 ± |A|, which is not an integer. Because we have reached a contradiction, our assumption, that sin 1 is
rational, was incorrect. �

We will not go over the proof for cos 1, because slightly editing the proof for the Taylor polynomial for
cosx is enough to prove that cos 1 is irrational.

Intuitively, it makes sense that sin 1 is irrational; after all, it doesn’t have any factor of π in it.
Shifting away from trigonometric functions, we have log 2. Once again, we can see that this is likely

irrational, but let’s definitively prove it.

Lemma 5.6. log 2 is irrational.

Since this is the natural log, we sense that this question is somewhat related to whether ex is rational.
And in fact, that would be correct; we can use the fact that e, and thus, ex is transcendental in our proof.

Proof. Let’s assume, for the sake of contradiction, that log 2 = p
q (where p and q are integers), which gives

us that q log 2 = p, and thus, that 2q = ep for positive integers p and q. However, we know that e is
transcendental, and thus, it cannot be the solution to polynomial xp = 2q. Therefore, there are no positive
integers p and q such that 2q = ep, meaning that we have a contradiction. Because we have reached a
contradiction, our assumption that log 2 is rational must have been incorrect. �

6. Techniques for Proving Irrationality

Although ideally we could have gone through several different techniques for proving irrationality through
the different proofs, the most common ones are exactly of the previous ones. For simpler ones, we simply use
a proof by contradiction, setting some irrational number I = p

q and then doing a few manipulations to reach

a contradiction. For more complicated ones, many proofs simply use a well thought-out function that has
a few specific properties, then use that to show a contradiction. However, are there other types of proofs?
Although many well-known proofs conform to the above types, there are many other types of proofs that
can prove irrationality.

6Note that, like civilized mathematicians, we use radians by default.
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6.1. Geometric Proofs. When we think of irrational numbers related to geometry, one of the first ones
that comes to mind is π. Of course, the ratio between the diameter and the circumference is π, but how
would be prove that their ratio is irrational? Currently, there is no geometric proof of π’s irrationality, which
is surprising because of π’s definition being based on geometry. Luckily, another number is intimately related
to geometry is

√
2. The most common proof that is taught was discussed at the beginning of this paper, but

there are other proofs. Interestingly, the two most well-known geometric proofs of
√

2’s irrationality rely on
Infinite Descent, just as the first proof we covered did. We will go over only one of the proofs, which is based
on similar triangles.

Geometric Proof of Lemma 2.1. Before we begin, note that the (left) diagram below this proof depicts our

construction. We assume, for the sake of contradiction, that
√

2 is a rational number. Therefore, we have√
2 = p

q for p, q ∈ Z, and gcd (p, q) = 1. We can create a right triangle 4ABO with the right angle at B

with side lengths q, q, p, because 2q2 = p2. This is the smallest such right triangle with integral side lengths
because p and q share no factors. Now, draw in the π

4 sector of a Circle A with radius AB, and define the
intersection point of Circle A and line segment AO to be point C. Now, draw the line tangent to the circle
at point C, which is perpendicular to AO. Then, this line intersects OB at D, creating line CD, and triangle
4OCD. We know that 4OCD ∼ 4ABO by AAA similarity. We claim that 4OCD also has integral sides.
Because AB and AC are both radii of the same circle, AB = AC = q. Then, OA−AC = OC, so OC = p−q,
and because 4OCD is isosceles, OC = CD = p − q. We know by equal tangents that CD = DB = p − q,
which means that Od = 2q − p. 2q − p and p− q are both integral, because p, q are integral. Therefore, we
have found a smaller similar triangle with integral side lengths, and we have a contradiction. Therefore, our
assumption that

√
2 is rational must have been incorrect. �

There are also geometric proofs that
√
m is irrational for numbers that aren’t perfect squares, but perhaps

more interesting (and different) is a geometric proof that e is irrational. Instead of relying on a direct
geometric construction, we will simulate the Taylor Series on a number line, as depicted above, on the right.

Geometric Proof of Lemma 3.2. Before we begin, note that the number line above (on the right) includes
the diagram for our geometric proof. Consider the portion of the number line I1 from 2 to 3. Take the
second half of that portion of the number line, I2, which gives us the section from 2.5 to 3. Next, take the
the second third of I2, which gives us I3. Given some In, we find In+1 by taking the second of n+ 1 equally
spaced portions of In. this effectively adds 1

(n+1)! after every portion, simulating the Taylor Series for e. The

intersection of In for all positive integral n is the sole point e on the number line.
We know that the for n > 1, In+1 lies entirely within In, and the bounds for In are a1

n! and a2
n! (where

a1 and a2 yield fractions as close as possible to e), which together imply that e does not lie on a point with

denominator n! for any positive n. However, this is a contradiction, because e = p
q = p(q−1)!

q! . Because we

have reached a contradiction, our original assumption that e is rational must have been incorrect. �

Geometric proofs, however, are at their core the same as the other types; they follow a proof by contradic-
tion, and then use techniques in geometric form that are analagous to the algebraic form we have seen before,
or at least use similar techniques. In fact, any proof by contradiction will fall prey to this, so the only other
proof that is structurally different is a proof that is not by contradiction. However, is this even possible?
After all, irrationality is negatively defined, so can we directly prove that a number is irrational, rather than
proving that it is not rational. In fact, we can prove irrationality without a proof by contradiction.
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6.2. Direct Proofs. Technically, it is not possible to provide a completely constructive proof; somewhere
down the line, we are using a proof by contradiction, but there are several proofs that are structurally
different and distinctly more direct than our other proofs. For example, proofs using continued fractions
show that there is a nonrepeating infinite continue fraction representation of some number, which must be
irrational. We will not discuss a specific proof of irrationality with continued fractions, because a major part
of the proof is deriving the continued fraction, which is difficult.

Furthermore, another common type of proof is a bounding proof, which shows that there is a minimum
difference between some rational number and any rational number, with the bound often in terms of the
denominator of the rational approximation. Let’s go over one example, with

√
2.

Bounding Proof of Lemma 2.1. Given two numbers p and q, the highest power of 2 dividing 2q2 is odd,
and the highest power of 2 dividing p2 is even. Therefore, p2 and 2q2 must be distinct integers, and thus
|2q2 − p2|≥ 1, Now, our approximation

|
√

2− p

q
|= |q

√
2− p
q

|= | 2q2 − p2

q(q
√

2 + p)
|= | 2q2 − p2

q2(
√

2 + p
q

|≥ | 1

q2(
√

2 + p
q )
|≥ 1

3q2
.

The last inequality is true because because we assume that
√

2 + p
q ≤ 3, or that p

q ≤ 3−
√

2. If this weren’t

true, then we would already have a bound on the difference between p
q and

√
2, so we assume it to be true

to take the other case. We have a lower bound on the difference between
√

2 and p
q for any integral, positive

p, q. Therefore,
√

2 is distinctly apart from any rational. �

Unlike our previous proofs, this is proving not that
√

2 is not rational, but instead proving that there is
a distinction between

√
2 and any rational number.

7. Conclusion

Overall, proof by contradiction is one of the most prevalent methods of proving irrationality, but there
are a few subdivisions within proof by contradiction that dictate how we go about the proof. More powerful,
however, than irrationality is transcendence. Transcendence is extremely difficult to prove (note that we
didn’t even go over the full proof of π and e’s transcendence because we did not prove the Lindemann-
Weierstrass theorem), and consequently, very few numbers are proven to be transcendental. In fact, it is
still unknown if πe, π+ e, πe, ππ, and ee are transcendental. Even the proofs of irrationality were somewhat
difficult, because although we were able to go over the proofs quickly, coming up with the functions with
those specific properties is difficulty, especially during the first such proofs, such as in proving that e4 is
irrational. Many of the functions went unmotivated in this paper because it is simply very difficult to find
those functions; other than searching for certain properties, we have no way of knowing why some certain
function was chosen.

The deceivingly simple ideas of irrationality and transcendence hide their true nature: extremely difficult
to prove. However, irrationality and transcendence continue to be very important properties, so we will
continue searching for more proofs.
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