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Abstract
In a configuration of n ≥ 3 points where not all points lie on a line, we would like to find the minimum
number of slopes when we connect the points. In this paper, we will review the proof in [1] of the fact
that, when n is odd, the minimum number of slopes is n− 1, and when n is even, the minimum number
of slopes is n.

1 Introduction

Given n ≥ 3 points that are not all in a line, what is the minimum number of slopes we can get if we connect
these points? Certain configurations of n points can have less slopes than others. In this configuration,
where n = 4, there are 6 slopes: -3, - 12 , 0, 2

3 , 2, 3 (Figure 1).

(0,1)

(2,0)

(3,3)
(1,3)

Figure 1: n = 4 and M = 6.

But, we can find a configuration of n = 4 points with fewer slopes. Let M be the minimum number of
different slopes. We want to find M for n = 4. Three of the points, A, B, and C, form a non-degenerate
triangle since not all 4 points lie on a line. This implies that all 3 sides have different slopes, so M has to
be at least 3. Let l, m, and n be the lines AB, AC, and BC respectively, extended in both directions. If D
lies on l, we can immediately see that DC ∦ AC and DC ∦ BC. In addition, DC ∦ AB unless C lies on the
line containing A, B, and D which cannot happen. So, DC has a different slope from AB, AC, and BC. If
D lies on m, then DB in not parallel to AB, AC, and BC, and if D lies on n, then DA in not parallel to
AB, AC, and BC. This implies that if D is a point on l, m, or n, there are at least 4 different slopes.

Suppose there is a position for D such that there are only 3 different slopes. Then, DA ∦ AB since D does
not lie on l, and DA ∦ AC since D does not lie on m, so DA has to be parallel to BC. Similarly, DC
has to be parallel to AB, and DB has to be parallel to AC. So D must be at the intersection point of the
line parallel to AB passing through C, the line parallel to AC passing through B, and the line parallel to
BC passing through A. But this is not possible since the 3 lines form a non-degenerate triangle (Figure 2).
Hence, there must be at least 4 different slopes.

Consider 4 points that form a square when connected. Then there are 4 slopes. When we add a fifth point
at the intersection of the diagonals of the square, then there is still 4 slopes (Figure 3).
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Figure 2: An example of the line parallel to AB passing through C, the line parallel to AC passing through
B, and the line parallel to BC passing through A.

Figure 3: If n = 5, this configuration gives the smallest number of slopes.

Theorem 1. [1] If n ≥ 3 points in the plane do not lie on one single line, then they determine at least n−1
different slopes, where equality is possible only if n is odd and n ≥ 5.

2 Sequence of permutations

Proof. We will first show why the minimum number of different slopes is n − 1 when n is odd. Consider a
line segment l that contains n − 2 points, P1, . . . , Pn−2 that partition l into n − 3 pieces. We can create a
perpendicular bisector m to l with two points, B and C equidistant from l. The point Pn−1

2
is the point at

the intersection of l and m and we can call it A (Figure 4). If we connect P1, . . . , Pn−2 to C, we get the line
segments P1C, . . . , Pn−2C, so there are n− 2 different slopes. The line l has a different slope from all of the
n− 2 slopes since C doesn’t lie on l. The other two lines, BC and BA, have the same slope as AC since A
lies on BC, and we have already counted AC part of the n− 2 slopes. We can also see the lines connecting
B to P1, . . . , Pn−2 have the same slopes as the lines connecting C to P1, . . . , Pn−2. Therefore, when n is odd,
there is a configuration that has n− 1 different slopes.

If n is even, we can create a similar configuration to the one where n is odd, that has n slopes. Consider a
line segment l that contains n − 2 points, P1, . . . , Pn−2 that partition l into n − 3 pieces. We can create a
perpendicular bisector m to l connecting two points, B and C that are equidistant from l. There are n− 2
slopes when we connect C to P1, . . . , Pn−2, line l has a different slope, and BC has a different slope. So,
there are n slopes.

Now, we need to prove that when n is even, the minimum number of slopes is n. Given a configuration with
n points, let t be the number of slopes. Then t ≥ 2 since not all points can lie on a line. We can begin by
drawing a circle around the configuration of points. Let X be a point at the base of the circle. Consider a
line tangent to the circle at X. We can assume, without loss of generality that in the configuration, no line
connecting two or more points is perpendicular to the tangent. Next, project the points of the configuration
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Figure 4: Here, n is odd and M = n− 1.
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Figure 5: For this configuration of points where n = 4,
we can project the points onto the tangent, when the
tangent is at the base of the circle and the tangent is
at the top of the circle.

onto the tangent and label them 1, . . . , n in the order they appear. Call this projection σ0 = 1 . . . n, the first
permutation. We can start rotating X counterclockwise around the circle.

Let P and Q be points on the circle such that when we project the points of the configuration onto the
tangent at P , we get the permutation, σi, and when we project the points of the configuration onto the
tangent at Q, we get the permutation, σi+1. From P to Q, the permutation changes. If the permutation
changes, then at least two numbers in the permutation swap, which means that the order of the projections
of at least two points in the configuration swap. Let A and B be two of the points in the configuration
that are being projected. At some point M in between P and Q, A and B have the same projection when
projected on to the tangent at M . We can see that this happens when the tangent is perpendicular to the
line connecting A and B.

This implies that the number of times that the permutation changes is the same as the number of times that
the tangent is perpendicular to a line connecting at least two points in the configuration. So, the number
of permutations in the sequence is equal to the number of slopes in the configuration of points. By rotating
X 180◦ around the circle, we get this sequence of permutations: σ0 → ... → σt. We notice that the first
permutation in the sequence is σ0 = 123...n and the last is σt = n...321, and this is easy to see if we rotate
the circle along with the configuration of points (Figure 5).

Also, by the end of the sequence, every pair of numbers i and j where 1 ≤ i ≤ j ≤ n are swapped exactly
once. This is because, from σ0 to σt, the places where i and j swap are when the tangent is perpendicular
to the line connecting i and j, and this happens at both ends of the line. But only one occurs in the 180◦

section of the circle. Now, if we rotate X 360◦ around the circle and project the points in the configuration
onto the tangent, we get the following sequence:

σ0 → σ1 → . . .→ σt−1 → σt → σt+1 → . . .→ σ2t

We can see that the term σi+t is the reverse of the term σi where 1 ≤ i ≤ t and σ0 is equal to σ2t.

Definition 1. The partition divides each permutation with an even number of elements, into two equal
parts, a left side and a right side. If a permutation has n numbers, when we partition the permutation, the
left side and right side have n

2 numbers.

We can partition each permutation and see how many numbers cross the partition. A move represents the
transition from one permutation to the next.
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Definition 2. A move between two permutations is a crossing move if the numbers that get swapped cross
the partition.

Definition 3. If the crossing move is such that exactly d numbers on one side of the permutation cross the
partition and at least d numbers on the other side of the permutation cross the partition, then the crossing
move has order d.

For example, in a configuration, consider the permutation σ2 = 213564 where the points 1,3,5 and 6 lie in
a line. When we cross the line, we get the permutation σ3 = 265314. If we partition the two permutations,
we can see which numbers cross the partition.

σ2 = 213|564→ 265|314 = σ3

where ”|” is the partition. In this crossing move, 3 swaps with 5 and 1 swaps with 6, so the order of this
crossing move is d = 2. The crossing move from σ5 = 652|341 to σ6 = 654|321 swaps 2 with 4, so this move
has order d = 1.

Definition 4. A touching move is a move that reverses at least one group of numbers where one of the
numbers in each group is adjacent to the partition, and no numbers cross the partition.

For example,
σ0 = 123|456→ 213|546 = σ1

Here, 4 swaps with 5, and 4 is adjacent to the partition.

Definition 5. An ordinary move is a move that is neither a crossing move nor a touching move. This move
swaps numbers that aren’t adjacent to the partition and none of the numbers cross the partition.

For example,
σ1 = 213|546→ 213|564 = σ2

Here, 4 swaps with 6 and both 4 and 6 are not adjacent to, and do not cross the partition.
So, every move is either a crossing, touching, or ordinary move. Let C(d) denote a crossing move of order d,
T denote a touching move, and O denote an ordinary move.

Now, we need to prove three things.

Lemma 2. Let d and e be orders of crossing moves. Then,

(a) There is a touching move between one crossing move and the next.

(b) There is at least d ordinary moves between a crossing move and the next touching move.

(c) There is at least e ordinary moves between a touching move and the next crossing move.

Definition 6. A substring is a group of numbers that are being swapped when we go from one permutation
to the next.

Every move acts on a line of points in a configuration, and at the starting position, the points were projected
onto the tangent and labeled in increasing order. For example, in a configuration with n points, let k points
all lie on a line l where k < n. When the tangent is not perpendicular to l, we can project the points onto
the tangent and label them a1, . . . , ak in the order they appear. For this position of the tangent, we have
the substring, a1 . . . ak. When we cross the point where the tangent is perpendicular to l, the projection of
the k points onto the tangent reverses and we get the substring, ak . . . a1 (Figure 6).

Before a crossing move of order d, we have a substring whose numbers are in increasing order. After the
crossing move acts on that substring, the numbers in the substring become in decreasing order. Since the
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Figure 6: The points a1, . . . , ak lie on a line l. The two lines represent the two positions on the tangent.

substring has numbers on both side of the partition, there is no increasing substring that crosses the partition,
so the next move cannot be a crossing move.

Consider the part of the decreasing substring which has d numbers on both sides of the partition. Call the d
numbers in the part of the substring on one side of the partition, a1, . . . , ad, and the d numbers in the part
of the substring on the other side of the partition, bd, . . . , b1.

The next touching move will swap ad with an adjacent number and bd with an adjacent number, without
any number crossing the partition. But, the next move cannot be a touching move since ad and bd are in a
decreasing substring. The numbers that are possible to swap are a1 and b1.

First, an ordinary move will swap a1 and b1 with numbers that are adjacent to them that are not one of
a1, . . . , ad and bd, . . . , b1. Now, there are d − 1 numbers on both sides of the partition. The next ordinary
move will swap a2 and b2 with numbers adjacent to them that are not one of a1, . . . , ad and bd, . . . , b1.
Ordinary moves must take place until we have one number on each side of the partition. When we have
one number on each side, the next move can be a touching move. So, there must be at least d− 1 ordinary
moves after a crossing move and before the next touching move.

After a touching move, let the next crossing move have order e. Since the crossing move acts on an increasing
substring, we can consider the part of the increasing substring which has e numbers on both sides of the
partition. Call the e numbers in the part of the substring on one side of the partition, c1, . . . , ce, and the e
numbers in the part of the substring on the other side of the partition, fe, . . . , f1. The previous move has
to have been an ordinary move that swapped c1 and f1 with numbers adjacent to them that are not one of
c1, . . . , ce and fe, . . . , f1. Working backward analogously to what we did for (a), we can see that there must
be at least e− 1 ordinary moves that had taken place before the crossing move.

By the end of the sequence of permutations, all the numbers will have crossed the partition at least once
since, when X rotates 180◦ around the circle, we get the sequence of permutations,

σ0 → σ1 → . . .→ σt−1 → σt

so we have crossed all the lines exactly once, which means that every pair of numbers in the permutation
have swapped exactly once. Let the orders of the crossing moves be x1, . . . , xc. If the crossing move has
order xi, it means that 2xi numbers crossed the partition. Since all n numbers have crossed the partition at
least once,

c∑
i=1

2xi ≥ n

A touching move can only take place between two crossing moves. If there is only one crossing move, and
no touching moves, then all the points in the configuration must all lie on a line, but this is not allowed.
So, there must be a touching move. Assume, without loss of generality, that X is at a point where the first
move is a touching move. The length of the sequence of permutations is equal to the sum of the number of
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touching, crossing, and ordinary moves. First, there are c crossing moves (C). Next, since there is one T
between every pair of C’s, and the first move is a touching move, there are at least c T ’s. Finally, before
and after every C, there are xi − 1 O’s, so the total number of O’s are

c∑
i=1

(2xi − 2) =

c∑
i=1

2xi − 2c

When we add the total number of C’s, O’s, and T ’s, we get

t ≥
c∑

i=1

2xi ≥ n

So, when n is even, the minimum number of slopes is n. �
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