
SOLVING THE DINITZ PROBLEM

ANTHONY LEONG

1. Introduction

The Dinitz Problem is a coloring problem raised by Jeff Dinitz in 1978. 15 years later, Fred
Galvin was able to solve this problem using graph theory. A result of the Dinitz problem is
that it expanded much of the current understanding of modern graph theory.

Consider n2 cells arranged in a n × n square and let (i,j) denote the cell in row i and
column j. Suppose that for every cell (i,j) we are given a set C(i,j) of n colors. Is it then
always possible to color the whole array by picking for each cell (i,j) a color from its set C
(i,j) such that the colors in each row and each column are distinct?

To understand this problem, let’s consider a simple case where each cell has the same color
set of {1, . . . , n}. We can use Latin squares to solve this.

Figure 1. Here is an example of a Latin Square with n=3.

In a Latin square, it is always possible to fill up the cells so that no cells in the same row
or column have the some color. In Figure 1, we could fill each cell in the 3 × 3 box with a
number 1 to 3. This can be easily shown because when we fill out a row, which is n-cells
long, from left to right, each subsequent cell has 1 less choice than the one before. Once we
get to the last cell, there will be exactly one choice left, thus, we have constructed a row
which satisfies the criteria for the Dinitz Problem. We can construct the next row the same
way, except, we cannot repeat the same color as the cell directly above a cell in the second
row. To do this, we can use the same pattern as the first row except that each cell is shifted
over one cell to the right, and the rightmost cell will be moved below the leftmost cell in the
first row. We can continue this for n-1 steps after the first row which will be just enough to
construct an n × n square where no cell has the same color any others in the same row or
column. This is done in Figure 1, except that the cells are moved one cell to the left.

Notice that it is impossible to color the cells with an amount of colors less than n. We
would not even have enough colors to construct a row that satisfies this criteria.

The Dinitz problem is harder that filling the cells as Latin squares because each cell has a
designated set, C(i,j), of n colors. The set

⋃
i,j C(i, j) may contain more than n colors. For

example, let’s try n=2. In the picture below, it is not always possible to pick a coloring. If
we pick 2 for the second cell in the first row, it will be impossible to create a coloring.
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{1, 2}

{1, 3}

{2, 3}

{2, 3}

To solve the Dinitz Problem, a little bit of background knowledge on graph theory is
necessary. Let us construct the graph by assigning a vertex to each cell. We will use edges
to connect the vertices to other vertices in the same row and column. The notation we will
use to denote the graph will be G=(V,E) where |V |= number of vertices, |E|= number of
edges. χ(S) is the chromatic number of the graph (the smallest number of colors that one
can assign to the vertices such that adjacent vertices-vertices connected by an edge- will
receive different colors). By coloring the vertices, we are partitioning the vertices into their
own groups or classes. A set A ⊆ V is independent if there are no edges between the vertices
within the set A.

2. List Colorings

An issue we ran into when comparing the cases between the Dinitz problem and the basic
case with each cell having the same n colors is that some cells have a different set of n-colors.

Definition 2.1. A list coloring is a coloring c : V →
⋃
v∈V C(V ) where c(v) ∈ C(v) for each

v ∈ V .

Figure 2. List coloring of a complete bipartite graph K3,3.

The function C : V assigns a designated set of colors to each v ∈ V . This way, each vertex
will have a list of colors as in the original question. Figure 2 is a list coloring because each
vertex is assigned a set of colors, C(v).

Definition 2.2. List chromatic numbers (χι(G)) is the smallest number k such that, for any
list of color sets C(v) with |C(v)| = k for all v ∈ V there always exists a list coloring.

Notice that if we pick one color in Figure 2, there cannot be a coloring since there are
only 3 colors, and each vertex is connected to 3 colors. That means that the list chromatic
number is greater than 3.

An interesting concept that could also be applied to list colorings is choosability in graphs.
We can say that a graph is k-choosable if a coloring exists for all vertices if the number of
elements in each vertex is ≥ k.

(χι(G)) ≤ |V | since having the same number of colors in each cell as the number of vertices
would allow each vertex to have a color different from every other vertex in the graph.
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χ(G) ≤ χι(G) since ordinary coloring of the graph is a more optimal method of coloring
the graph than list coloring. This is because ordinary coloring is list coloring when each cell
has the same colors.

Let (Sn) denote the graph corresponding to the n×n grid. Since we know that the coloring
of the n× n grid must have at least n-colors, we can restate the Dinitz problem:

Proposition 2.3. Is it true that χι(Sn) = n?

Let’s consider the graph G = K4,2.

Figure 3. Complete bipartite graph pairing 4 vertices on one side with two
vertices on the other

Each vertex has a chromatic number of 2 since we would only need one color for the two
right vertices and the other color for the four left ones. In Figure 3, let us assign color sets
to the left vertices from top to bottom as {1, 3}, {1, 4}, {2, 3}, {2, 4} and the right ones from
top to bottom as {1, 2}, {3, 4}. This way, we can assign the right vertices as 1|3, 1|4, 2|3,
and 2|4 . Each of these sets can appear as a color set on the left side, so we would need at
least a list chromatic of 3 or more.

Now, let’s get back to solving the Dinitz Problem. An important step in finding a solution
was made by Jeanette Janssen in 1992. It was proven that χι(Sn) ≤ n + 1. This was
combined with two lemmas by Fred Galvin to finally solve the Dinitz Problem.

3. Directed Graphs and Kernels

Definition 3.1. The degree of a vertex, v, denoted as d(v), is the number of edges connected
to that vertex.

Figure 4. A directed graph with vertices labeled A through G
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In Sn, the degree of each vertex is 2n-2 since each vertex is connected to the n-1 other
vertices in its row and n-1 other vertices in its column.

Definition 3.2. For a subset A ⊆ V , we denote the subgraph by GA which has A as vertex
set and which contains all edges of G between vertices of A.

Definition 3.3. H is an induced subgraph of G if H = GA for some A.

Definition 3.4. Directed graphs (~G = (V,E)) are graphs where every edge e has an orien-
tation.

Figure 4 is an example of a directed graph, and the direction of the arrows indicate the
orientation.

Definition 3.5. e=(u,v) means that there is an arc e, also denoted by u→ v whose initial
vertex is u and whose terminal vertex is v.

In figure 4, at the left, the edge between A and B has A as the initial vertex and B as the
terminal vertex.

Definition 3.6. The outdegree (d+(v)) counts number of edges with v as initial vertex.

If we use vertex E, the outdegree is only 1.

Definition 3.7. The indegree (d− (v)) counts number of edges with c as a terminal vertex

If we also use vertex E as an example, the indegree is 3.
An important observation to notice is that: d+ (v) + d− (v) = d(v)

Definition 3.8. Let ~G = (V,E) be a directed graph. A kernel K ⊆ V is a subset of the
vertices such that:

(i.) K is independent in G, and
(ii.) for every U 6∈ K, there exists a vertex v ∈ K with an edge u→ v.

In Figure 4, the set {A,C,D, F} is a kernel.

Lemma 3.9. Let ~G = (V,E) be a directed graph, and suppose that for each vertex v ∈ V ,
we have a color set C(v) that is larger than the outdegree, |C(v)| ≥ d + (v) + 1. If every

induced subgraph of ~G possesses a kernel, then there exists a list coloring of G with a color
from C(v) for each v.

Proof. We will use induction on |V |. For |V | = 1 we are done.
Choose a color c ∈ C =

⋃
v∈V C(v) and set A(c) = {v ∈ V : c ∈ C(v)}.

By hypothesis, the induced subgraph GA(c) possesses a kernel K(c). Now we color all
v ∈ K(c) with the color c since K(c) is independent, and delete K(c) from G and c from
C. Let G∗ be the induced subgraph of G on V \ K(c) with C∗(v) = C(v) \ c as the new
list of color sets. Notice that for each v ∈ A(c) \K(c), the outdegree d+(v) is decreased by

at least 1 (due to condition (ii) of a kernel). So d+(v) + 1 ≤ |C∗(v)| still holds in ~G∗. The
same condition also holds for the vertices outside A(c), since in this case the color sets C(v)
remain unchanged. The new graph G∗ contains fewer vertices than G, and we are done by
induction. �

Now, we have to find an orientation of the graph Sn with outdegrees d + (v) ≤ n− 1 for
all v and which ensures the existence of a kernel for all induced subgraphs.
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Figure 5. An example of a bipartite graph where the blue lines are
matchings, and the uncolored lines are potential matchings (N(v) for each
vertex, v

4. Stable Matchings

Definition 4.1. A bipartite graph G = (X ∪ Y,E) is a graph with the following property:
the vertex set V is split into two parts X and Y such that every edge has one endvertex in
X and the other in Y. (Can be colored with two colors (X and Y))

Figure 5 is an example of a bipartite graph, and the vertices are split into the top and
bottom sets.

Definition 4.2. A matching M in a bipartite graph G = (X ∪ Y,E) is a set of edges such
that no two edges in M have a common endvertex.

An analogy to best explain the concept of stable matchings will be marriage. Each vertice
represents a person. Let X be a set of men and Y be a set of women. uv ∈ E means
that u and v could marry, and bigamy is not allowed. In real life, a person may have
preferences to whom he or she would want to marry. This gives a ranking system as follows:
In G = (X ∪ Y,E), we assume that for every v ∈ X ∪ Y there is a ranking of the set N(v)
of vertices adjacent to v, N(v) = (z1) > (z2) > . . . > (zd(v)).Thus, z1 is the top choice for v
followed by z2, and so on.

Definition 4.3. A matching M of G = (X ∪ Y ), E is called stable if the following condition
holds: Whenever uv ∈ E \M , u ∈ X, x ∈ Y , then either uy ∈ M with y > v in N(u) or
xv ∈M with x > u in N(v), or both.

In the analogy, a matching would not be stable if there is a preference where both vertices
would prefer each other over their current partner if married.

Lemma 4.4. A stable matching always exists.

Proof. Let’s create an algorithm. In the first stage all men u ∈ X propose to their top choice.
If a girl receives more than one proposal she picks the one she likes best and keeps him on a
string, and if she receives just one proposal she keeps that one on a string. The remaining
men are rejected and form the reservoir R. Next, all men in R propose to their next choice.
The women compare the proposals (together with the one on the string, if there is one),
pick their favorite and put him on the string. The rest is rejected and forms the new set R.
Now the men in R propose to their next choice, and so on. A man who has proposed to his
last choice and is again rejected drops out from further consideration (as well as from the
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reservoir). Clearly, after some time the reservoir R = ∅, which ends the algorithm. This is
suffice to form a stable matching.

Notice first that the men on the string of a particular girl move there in increasing pref-
erence (of the girl) since at each stage the girl compares the new proposals with the present
mate and then picks the new favorite. Hence if uv ∈ E but uv /∈ M , then either u never
proposed to v in which case he found a better mate before he even got around to v, implying
uy /∈ M with y > v in N(u), or u proposed to v but was rejected, implying xv ∈ M with
x > u in N(v). But this is exactly the condition of a stable matching. �

5. Galvin’s Solution to the Dinitz Problem

Theorem 5.1. We have χι(Sn) = n for all n.

Proof. As before we denote the vertices of Sn by (i, j), 1 ≤ i, j ≤ n. Thus (i, j) and (r, s)
are adjacent if and only if i = r or j = s. Take any Latin square L with letters from
{1, 2, ..., n} and denote by L(i, j) the entry in cell (i, j). Next make Sn into a directed graph
~Sn by orienting the horizontal edges (i, j)→ (i, j∗) if L(i, j) < L(i, j∗) and the vertical edges
(i, j) → (i∗, j) if L(i, j) > L(i∗, j). Thus, horizontally we orient from the smaller to the
larger element, and vertically the other way around. Figure 6 shows what the directed graph
will look like for n=3.

Figure 6. An example of the constructed directed graph for n=3

Notice that we obtain d+(i, j) = n − 1 for all (i, j). This is because each vertex has an
outdegree if a number greater than it is in the same row or if a number less than it is in the
same column. In fact, if L(i, j) = k, then n-k cells in row i contain an entry larger than k,
and (k-1) cells in column j have an entry smaller than k.

By lemma 3.9, it remains to show that every induced subgraph of ~Sn possesses a kernel.
Consider a subset A ⊆ V , and let X be the set of rows of L, and Y the set of its columns.
Associate to A the bipartite graph G = (X ∪ Y,A), where every (i, j) ∈ A is represented by
the edge ij with i ∈ X,j ∈ Y . In Figure 7, the cells of A are shaded.

Figure 7. This is a matching with that corresponds to Sn
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The orientation on Sn naturally induces a ranking on the neighborhoods in G = (X∪Y,A)

by setting j∗ > j in N(i) if (i, j)→ (i, j∗) in ~Sn respectively i∗ > i in N(j) if (i, j)→ (i∗, j).
By lemma 4.4, G = (X∪Y,A) possesses a stable matching M. Note first that M is independent
in A since as edges in G = (X ∪ Y,A) they do not share an endvertex i or j. Secondly, if
(i, j) ∈ A /∈ M , then by the definition of a stable matching there either exists (i, j∗) ∈ M
with j∗ > j or (i∗, j) ∈ M with i∗ > i, which for ~Sn means (i, j) → (i, j∗) ∈ M or
(i, j) → (i∗, j) ∈ M . The key to what we did is connect the notion of stable matching
with the desired subset, A, which matches lemma 3.9. By lemma 3.9, we would have a list
coloring. The proof is complete. �

6. Line Graphs

Let the completed bipartite graph be denoted by Kn,n with |X| = |Y | = n. Let’s allow
each edge to be a vertex and connect only the ‘edges” that share a common endpoint in Kn,n.
We actually end up obtaining Sn as the new graph since 2n-2 edges also share a common
endpoint with any arbitrary edge. We call Sn a line graph of Kn,n.

Let’s denote the line graph of a graph, G, by L(G). We will call H a line graph if H = L(G).
(Here, I would like to draw some examples of line graphs)

Does χι(H) = χ(H) hold for every line graph H?
This question has not been answered yet, but with time, we may see more and more

progress to figuring it out.
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