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1 Introduction

The friendship theorem answers a classic problem of mathematics, specifi-
cally graph theory. However, the origin of the question is yet to be discovered.
The theorem can be stated as follows:

Theorem 1. Suppose in a group of people we have the situation that any
pair of persons have precisely one common friends. Then there is always a
person (the“politician”) that everyone is friends with.

However, to prove this theorem, it will be more helpful to rephrase the
theorem using graph theoretic terms. In order to do this, it is important to
define what a friendship graph is.

Definition 1.1. A friendship graph is one in which each pair of vertices has
precisely one common neighbor.

The theorem can now be rephrased to include a graph theoretic descrip-
tion.

Theorem 2. Every friendship graph is a windmill graph, or in simpler terms,
there is one vertex that is adjacent to all other vertices.

An example of a windmill graph can be seen in figure 1.

Figure 1: windmill graph
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This paper will explore the original proof of this theorem, as well as a few
generalizations and a set theoretic application that depends on more relaxed
constraints. To do this we study the theorem in terms of more set theoretic
concepts. A translation of the theorem in to set theory is as follows:

Definition 1.2. A friendship set is a finite set with a symmetric non- re-
flexive binary relation, called “on,” satisfying: (i) if a is not on b, then there
exists a unique element which is on both a and b; (ii) if a is on b, then there
exists at most one element which is on both a and b. The relation ship “on
to” will be referred to as θ and the relation ship “ not on to ” will be referred
to as θ′

2 The Original Proof

The first proof of the friendship theorem was provided by Paul Erdös,
Alfred Rényi and Vera Sós. This proof, is to this day the most accomplished
proof provided for this theorem. Before diving into the proof however, it is
first necessary that we prove an important condition:

Lemma 1. A friendship graph G has a C4 property, which means that there
exist no cycles on 4 nodes. Additionally, the distance between any 2 nodes in
G is at most 2.

Proof. Suppose we assume the contrary, and have C4 as a subgraph of G.
Then, there would be 2 vertices u and v that have at least two common
neighbors, as two opposite vertices of a square. However, this poses a con-
tradiction to the friendship condition. Additionally, the distance between
any two nodes be at most two, since if the distance was any greater, the two
vertices have no common friends, which is once a gain a contradiction of the
friendship theorem.

At this point, we can begin the proof of the actual friendship theorem.

Proof. Suppose we assume the contrary, and provide the graph G as a coun-
terexample, meaning there exists no vertex in G that is adjacent to all other
vertices. There are two necessary steps for deriving a contradiction, the first
involving combinatorics and the second involving some standard results of
linear algebra.
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1. For the first step, we want to show that d(u) = d(v) for any u, v ∈
V . We can first start by showing that d(u) = d(v) when u and v
are nonadjacent vertices. Let d(u) = k, where a1, a2, . . . , ak are the
neighbor of u. Of all a1, a2, . . . ak, precisely one a1, say without loss of
generality a2, is adjacent to v, and a2 is adjacent to exactly one other
a1, say a1. The vertex v has the common neighbor a2 with a1, and with
any ai, (i ≥ 2), a common neighbor zi(i ≥ 2). However, in order for the
graph to adhere to the C4 condition each zi must be distinct. Hence,
we can conclude that d(v) ≥ k = d(u), and by symmetry that

d(u) = d(v) = k.

Now, if we want to count the number of vertices in G we can start by
summing over the degrees of the k neighbors of u, which gives us k2.
Since each vertex has one common neighbor with u, we have counted
every vertex once except u, meaning the number of vertices in G is

n = k2 − k + 1.

2. As stated above, the second step is an application of some standard
results in linear algebra. Before we can begin, it is important to note
that our k value must be greater than 2, because when k ≤ 2, we get
trivial windmill graphs. Now, suppose we look at the adjacency matrix
A = (aij). From step (1) we can see that each row must have exactly k
1’s, and since each pair of vertices has exactly one common neighbor,
for any two columns, there is exactly one column where both have a 1.
Therefore, we get :

A2 =


k 1 . . . 1
1 k 1
...

. . .
...

1 . . . 1 k

 = (k − 1)I + J,

where I is the identity matrix and J is a matrix consisting purely of
1’s. From our above equation, we can then notice that the eigenvalues
of A2 are k−1+n = k2 and k−1, which makes the eigenvalues of A, k
and ±

√
k − 1. Suppose now, that r of the eigenvalues are

√
k − 1 and

s of them are −
√
k − 1 , so that r + s = n− 1 where r 6= s. Since the
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sum of the eigenvalues of a matrix are equal to its trace, we can then
see that

k + r
√
k − 1− s

√
k − 1 = 0 =⇒

√
k − 1 =

k

s− r
.

We now use the fact that if the square root of a natural number is
rational, then it an integer (this was proven by Dedekind in 1858).
Suppose we let h =

√
k − 1 ∈ N, then

h(s− r) = k = h2 + 1

Because h is a divisor of h2 + 1 and h2, h must be 1, making k = 1.
However, we already excluded k = 2, which mean we have derived a
contradiction.

3 Significant Applications of the Theorem

A few significant applications of the friendship theorem exists in the realm
of combinatorics. For example, in the paper Intersection Properties of Finite
Sets, published by H. J. Ryser in 1973 in the Journal of Combinatorieal
Theorey, the theorem is used in classfying l-complete classes.

Additionally, when studying friendship graphs in terms of labeling and
coloring, there exist many provable properties, such as the fact that friendship
graphs have the chromatic number 3, and that the friendship graph Fn is
edge-graceful if and only if n is odd.

4 Generalizations of the Friendship Theorem

Now that we have a solid proof of the theorem, we can examine some
of the consequences and generalizations of the friendship theorem. First we
will generalize this problem to be variable on the number of paths between
vertices and the lengths of said paths. We call graphs with path length k
and number of paths between nodes l-regularly k-connected graphs, or Pl(k)
graphs.
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Theorem 3 (Kotzig’s Conjecture). This examines, what would happen if we
were to alter the lengths of the paths, k, but keep l = 1, so that there is only
one path of length k between each every pair of nodes.

Kotzig was able to prove in 1974, that there exists no P1(k) graphs where
k > 2 for k ≤ 8, and more cases have been proven through k ≤ 33, but a
general proof for all cases is yet to be generated. Now that we have generalize
on k, we can also generalize on l.

Theorem 4 (l friendship graphs). Keeping a path length of 2, we can focus of
l-friendship graphs, or Pl(2)-graphs which satisfy that every pair of nodes has
exactly l common neighbors. We want to now show that Every l-friendship
graph G is a regular graph for l ≥ 2

Proof. Consider the graph G with its set of vertices V . Now we can take
a node v that had degree d, and call L the subgraph of G containing the
neighbors of v and L′ to be the subgraph containing V \L. It then follows
that every node in L′ has a distance 3 from v. Considering a second node
a ∈ L, a has l neighbors in common with v, and therefore has l neighbors
in L. Now, suppose L′ = ∅, then a has l neighbors in L as well as v as a
neighbor, making deg(a) = l+ 1; this also holds true for all of a’s neighbors.
We know that d = deg(v) ≥ l + 1, since l + 1 accounts for a and all of its
neighbors. However, if d > l + 1, then that would mean that L must have
some node b that has no neighbors in commons with a, a1, a2, . . . , al. This
would mean any pair a, b has only one node in common v, which violates
the l-friendship condition described earlier. Hence, b cannot exist, making
all nodes in L have l + 1. Since V = L ∪ v, all nodes in V must also have a
degree of l + 1 making G a regular graph.

Now, we must consider the case where L′ 6= ∅. In this case, every x ∈ L′

has l neighbors in L, so that v and x have l common neighbors. For some
a ∈ L, there are (d − 1) nodes denoted b in L that are not a, making pairs
a, b have l common neighbors. There must be (d − 1)l paths from a to any
extreme node b ∈ L, of which (d − 1) must go through v and l(l − 1) paths
that go through nodes in L. From this, we can see that (d− l−1)(l−1) paths
go through some node in L′. We now examine c ∈ L′ that is a neighbor of
a, is an intermediate node in l− 1 paths of length 2 from a to b, since x has
l− 1 neighbors in L that are not a. From this, it follows that the number of
neighbors a has in L′ is:

(d− l − 1)(l − 1)

(l − 1)
= (d− l − 1).
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We can also deduce that any node in L has 1 + l+ (d− l− 1) = d neighbors.
Now, we want to prove that the same applies for any vertex in L′. If we
select any node as v and construct L and L′ with the same properties as the
earlier ones, we get the following:

|L′| = d(d− l − 1)

l

from the fact that |L| = d and every node in L has (d− l − 1) neighbors in
L′. It then follows that

|V | = |L|+ |L′|+ 1 =
d(d− 1)

l
+ 1.

Since this holds true for any v ∈ V of degree d, G must be a d-regular
graph.

5 Set Theoretic Application

Earlier in the paper, we introduced a set theoretic phrasing of the friend-
ship theorem (Theorem 3). This statement provides a translation in to sets
with a “on to” relationship. The relationship “on to” will be referred to as θ
and the relationship “ not on to ” will be referred to as θ′ One major differ-
ence in discussing the friendship theorem in terms of sets, is the relaxation
of constraints such that it is not necessary for two friends to have a common
friend. We will see that there do in fact exist nontrivial sets, that is is sets
that do not have a ”politician”. However the conditions for such sets to exist
are rather restrictive.
Provided the set A with a symmetric relation θ, it is considered a friendship
set if if adheres to the following conditions:

(i) a θ′ a for any element a of A

(ii) if a θ′ b, then there exists a unique element c ∈ A, such that a θ c and
b θ c

(iii) if a θ b, there exists maximum on element c ∈ A such that a θc and b θ c/

Additionally, an element a ∈ A is considered a P - element if a θ x for all
x 6= a in A. A set A is nontrivial if it has more than three elements and
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there exist to P -elements in A (the equivalent of not having a ”politician”).
An example of a nontrivial friendship set, is the Peterson Graph(figure 2).

Figure 2: Peterson Graph

Now that we have a clear definition of friendship sets and their conditions,
we can start looking at some of their properties.

Lemma 2. Every element of a nontrivial friendship set is on at least two
distinct elements.

Proof. Suppose we assume the contrary. By definition each element is on at
least one element, so we assume that every element is on exactly one element.
If and element a is on another element b, then any other elements x is not
on a, but is on a common element with a, which in this case is b. However,
this would make b a P -element which is not allowed in nontrivial sets, and
therefore providing a contradiction.

Lemma 3. Suppose a and b are elements of a nontrivial friendship set A
with a θ b. Then, there exists an element x ∈ A such that x θ′ a and x θ′ b.

Proof. Once again, suppose we assume the contrary. Then every element
x ∈ A must be either on a or on b. Because A has no p-elements, there must
exist c, d ∈ A such that c θ′ a and d θ′ b, which means c θ b and d θ a. Now,
c θ′ d since otherwise a and c would be on the two common elements, specif-
ically b and d. Therefore, there exists an element e that has the following
relationships: e θ c and e θ d. This would mean e 6= a, b and e is on either a
or b. Now, if e is on a, then a and c are on both b and e. Likewise, if e is on
b, then b and d are on both a and e. However, since both of these cases are
impossible, we have found a contradiction, hence proving the lemma.

In addition to these two lemmas, Skala also discusses a few more prop-
erties of nontrivial friendship sets whose proof depend on complex linear
algebra concepts.
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6 Summary

Through this paper, we have examined a classic theorem in combina-
torics through its proof as well as few applications and generalizations of the
problem. However, many more proofs and applications of the theorem exist.
This also includes a variety of open problems, such as the generalization of
Pl(k)-graphs as a class with variation on both l and k.
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