
BUFFON’S NEEDLE PROBLEM

SOHOM DUTTA

1. Introduction

Buffon’s needle problem was a question by mathematician Georges-Louis Leclerc, Comte
de Buffon in the late 1700s, asking the following:

Question 1.1. Suppose that you drop a short needle on ruled paper – what is then the
probability that the needle comes to lie in a position where it crosses one of the lines?”

Figure 1. Image from Wolfram Math World

For this problem, we will assume that the needle is dropped randomly onto the paper.
That is, the needle’s center must have equal probability of being at any point on the paper
and all possible angles that the needle can make with the horizontal has equal probability.

Theorem 1.2. Consider a ruled paper with equally spaced lines at distance d from each
other. For a short needle of length l ≤ d that is dropped on the ruled paper (as shown in
Figure 1), the probability that it crosses one of the lines is

(1.1) p =
2

π

l

d

Proof. For a needle of any length, Let pi be the probability that it hits exactly i different
lines on the paper. Then, the probability that the needle will cross at least one of the lines
is

p = p1 + p2 + p3 + p4 + ...

The expected value of the number of crossings is

E = p1 + 2p2 + 3p3 + 4p4 + ...
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For a short needle, it is impossible to get more than one crossing so pi = 0 for all i ≥ 2.
Therefore, we get the expected value and the probability are the same or

E = p

It follows that to find the probability of a short needle hitting one of the lines, we need
to find the expected number of crossings of the needle. Let E(x) be the expected value of
the number of crossings of a needle of length x. For a needle of length x + y, its expected
value can be calculated by separating the needle into a front end of length x and back end
of length y. Using linearity of expectation, we get

E(x+ y) = E(x) + E(y)

Therefore, for integer x, E(x) = cx where c is a constant equal to E(1). We now want to
compute E(m

n
). Using our previous equation, we get

nE(
m

n
) = E(m)

E(m) = cm

Therefore,

E(
m

n
) = c

m

n
This allows us find the expected value of the number of crossings for a needle of rational
length.

We now want to find the value of c. Consider a needle in the shape of a perfect circle
C of diameter d. This needle will always hit the lines on the paper at exactly two points.
This circle can be approximated by an inscribed polygon Pn and a circumscribed polygon
P n such that

E(Pn) ≤ E(C) ≤ E(P n)

Using our formula for expected value, we get

cl(Pn) ≤ 2 ≤ cl(P n)

As n → ∞, we get

lim
n→∞

l(Pn) = dπ = lim
n→∞

l(P n)

Therefore, the two polygons are good approximations for C. Additionally, for n → ∞, we
get

cdπ ≤ 2 ≤ cdπ

Therefore,

c =
2

πd

p =
2

π

l

d
■

Another way to obtain this result is to integrate over all possible angles that the needle
can take on.
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Proof. Let α, such that 0 ≤ α ≤ π
2
, be the angle from the horizontal of the dropped needle.

Then, the needle has height l sinα. For a given line, there is a distance of l sinα where the
needle will intersect the line out of a total distance of d, giving the probability l sinα

d
of hitting

one of the lines. We can take the average over all α to get

p =
2

π

∫ π
2

0

l sinα

d
dα =

2

π

l

d

∣∣∣π2
0
=

2

π

l

d

■

This method of integration using the slope of the needle allows us to generalize this formula
to longer needles.

Theorem 1.3. For a long needle l ≥ d that is dropped on a ruled paper with equally spaced
lines at distance d from each other, the probability that it crosses one of the lines is

(1.2) p = 1 +
2

π

(
l

d

(
1−

√
1− d2

l2

)
− arcsin

d

l

)
Proof. For a longer needle, when l sinα ≤ d, there is a l sinα

d
probability of crossing a line. For

larger angles, the height of the needle will be greater than d so it must hit a line. Therefore,

p =
2

π

(∫ arcsin d
l

0

l sinα

d
dα +

∫ π
2

arcsin d
l

1dα

)

= 1 +
2

π

(
l

d

(
1−

√
1− d2

l2

)
− arcsin

d

l

)
Using Mathematica, we get the following probability graph where the x-axis represents

the length of the needle, the y-axis represents the probability that the needle crosses a line,
and d = 1.

Figure 2. Length of Needle vs Probability of Crossing
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We notice that when l = d = 1, p = 2
π
and p approaches 1 as x approaches infinity. ■

2. Buffon’s Needle Problem for Convex Polygons

Buffon’s needle problem can be generalized to other needles in the shape of a convex
polygon.

Theorem 2.1. For a thin plate in the shape of a polygon of perimeter P with diameter less
than d, which is the distance between two adjacent lines on a ruled paper, the probability of
crossing a line is

(2.1) p =
P

πd

Proof. Consider a plate in the shape of a quadrilateral. Let A, B, C, and D be the sides of
this quadrilateral. The plate can cross a line at either 0 or 2 points. Therefore, we get

p = P (AB) + P (AC) + P (AD) + P (BC) + P (BD) + P (CD)

where P (XY ) is the probability that the segments X and Y cross a line. We now look at
the probability that each side hits the line based on the other sides that also hit the line.
This gives us

P (A) = P (AB) + P (AC) + P (AD)

P (B) = P (BC) + P (BD) + P (BA)

P (C) = P (CD) + P (CA) + P (CB)

P (D) = P (DA) + P (DB) + P (DC)

Therefore,
P (A) + P (B) + P (C) + P (D) = 2p

Let α, β, γ, δ be the lengths of A,B,C,D,E respectively. From Theorem 1.2, we get

P (A) =
2

π

α

d
, P (B) =

2

π

β

d
, P (C) =

2

π

γ

d
, P (D) =

2

π

δ

d
Therefore,

p =
α + β + γ + δ

πd
=

P

πd
We now want to generalize this result to all convex polygons. Consider a convex polygon

with sides S1, S2, . . . Sn. A plate in the shape of this convex polygon will intersect a line at
0 or 2 points so

p =
∑
i,j

P (SiSj)

Then, for each i, we will get

P (Si) =
∑
j ̸=i

P (SiSj)

Summing over all i, we get ∑
i

P (Si) = 2p

Let si be the length of Si for all i. Then, from Theorem 1.2,

P (Si) =
2

π

si
d
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for all i From our previous equation, we get

p =

∑
i si
πd

=
P

πd
Therefore, our equation holds for plates in the shape of convex polygons.

■

3. Buffon’s Noodle Problem

Another extension of Buffon’s Needle Problem is found by replacing the needle that is a
straight line with a curved needle that can be thought of as a wet noodle. This extension
is known as Buffon’s Noodle Problem. The key difference between Buffon’s Needle Problem
and Buffon’s Noodle Problem is that while a line needle can only cross a given line once, a
wet noodle can cross the same line multiple times.

Theorem 3.1. For a wet noodle, N , of length l thrown onto a ruled paper with lines at
distance d apart, the expected number of crossings of N , given by E(N) is

(3.1) E(N) =
2l

πd

Proof. Consider a sequence of polygonal lines L1, L2, . . . that approximate N and segments
Li of the line denoted as Li1, Li2, . . . with Li = Li1 + Li2 + · · · + Lin. Let lij be the length
of Lij. For a sufficiently large N , we will have lij < d so E(Lij) is the probability of Lij

producing a crossing from Theorem 1.2. Therefore,

E(Lij) =
2lij
πd

Now, let li be the length of Li. As i approaches infinity, li will approach l. If, for any i,
e(Li) = e(Li1) + ...+ e(Lin), then

E(Li) =
∑
j

2lij
πd

=
2

πd

∑
j

lij =
2li
πd

Therefore, as i approaches infinity, we will get

E(N) =
2l

πd

and we will be done. Therefore, to prove Theorem 3.1, we need to show that E(Li) =
E(Li1) + · · ·+E(Li2). If we can prove this identity for n = 2, then we can use induction to
extend it to all n ≥ 2. Therefore, it suffices to show that for segments L and L′,

E(L+ L′) = E(L) + E(L′)

To prove this identity, we can look at cases based on the number of crossings. Let A
denote the event that only L crosses a line, B denote the event that only L′ crosses a line,
and C denote the event that L and L′ both cross a line. Events A and B will result in one
crossing while C will result in two crossings. Therefore,

E(L+ L′) = E(A) + E(B) + 2E(C)

Additionally, looking at the events in which L crosses a line and the events in which L′ cross
a line, we get

E(L) = E(A) + E(C)
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E(L′) + E(B) + E(C)

It follows that

E(L+ L′) = E(L) + E(L′)

Therefore, from our previous results,

E(N) =
2l

πd

This result shows that the expected number of crossings for a needle depends only on the
length of the needle and is not affected by the shape of the needle. An interesting application
of this idea is Barbier’s Theorem.

Theorem 3.2 (Barbier’s Theorem). Any closed curve of constant with d will have perimeter

P = πd

A circle of diameter d will have an expected number of crossings of 2 and circumference
dπ. In general, any closed curve of diameter d will have an expected number of crossings
of 2. Therefore, since the expected value of the number of crossings only depends on the
perimeter of the curve, the curve will have perimeter equal to the circumference of the circle.
Therefore, the perimeter of the closed curve will be P = πd.

■

4. Buffon’s Ball Problem

Buffon’s Needle Problem can also be generalized to three dimensions in a problem known as
Buffon’s Ball Problem. Instead of a two-dimensional needle, Buffon’s ball problem observes
the probability of a needle contained inside a sphere lying above one of the lines on the
paper.

Figure 3. Examples of needles contained in a sphere, Image from [Ric06]

Theorem 4.1. For a needle of length l contained in a ball of diameter l, the probability that
the needle lies over one of the lines of a lined paper with lines at length d ≥ l apart is

(4.1) p =
l

2d
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Proof. Let x be the distance between the base of the ball and the closest line. Then, the
probability that the needle crosses this line is

P (x) =
A(x)

πl2

where A(x) is the area of the region of the sphere that creates a crossing and πl2 is the area
of the sphere. No crossing can be created for x > l

2
so P (x) = 0 when x > l

2
. When x ≤ l

2
,

there are two diametrically opposite regions on the top and bottom for which the tip of the
needle can be placed which are shown below.

Figure 4. Image from [Ric06]

From a result by Archimedes, the area of the region is 2πrh where r is the radius of the
sphere and h is the height of the region. Plugging in our values of r = l

2
and h = l

2
−x, with

x being the distance from the center of the sphere to the given region, we get

A(x) = l2π

(
1− 2x

l

)
This gives us

P (x) = 1− 2x

l
We now integrate over all possible distances x to get

p =
2

d

∫ d
2

0

P (x)dx =
2

d

∫ L
2

0

(
1− 2x

l

)
dy

We can evaluate the given integral by finding the area of a triangle of height 1 and width l
2
.

Therefore,

p =
l

2d
■

Unlike the previous two problems, this extension to Buffon’s Needle Problem gives us a
probability formula that does not involve π. However, This extension can build on Buffon’s
Noodle Problem, with a curved needle of length l being placed inside a ball having an
expected number of crossings of

E =
l

2d
This also tells us that a curve of length l is expected to intersect parralel planes at distance
d apart, an expected number of times of E = l

2d
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5. The Buffon-Laplace Needle Problem

Buffon’s Needle Problem can also be extended to a two dimensional board. This extension
is known as the Buffon-Laplace Needle Problem in which a needle is dropped onto a board
divided into rectangles of equal width and height.

Figure 5. Board for Buffon-Laplace Needle Problem (Image from Wolfram
Math World)

Theorem 5.1. Consider a board lined with vertical lines a distance a apart from each other
and horizontal lines a distance b apart from each other and a needle of length l such that
l < a and l < b. The probability that the needle intersects one of the boundaries of the
rectangles on the board is

(5.1) p =
2l(a+ b)− l2

πab

Proof. To find the probability that the needle intersects the boundary of a rectangle, we first
want to find the complementary probability, or the probability that the needle is entirely
contained in a rectangle. Consider one of the rectangles ABCD such that AB = a and
BC = b. We can place this rectangle on the coordinate plane with A at the origin, AB on
the x-axis, and AD on the y-axis. The position of the needle can be represented by variables
x, y, and θ with 0 < x < a, 0 < y < b, and −π

2
< θ < π

2
where x and y are the coordinates

of the middle point of the needle and θ is the angle the needle makes to the horizontal. The
domain will then form a parralelepiped.

To find the probability that the needle will be enclosed inside ABCD, we consider the
parts of the domain for fixed θ. We can take the projection of this region onto the xy-plane
to get a rectangle PQRS contained inside ABCD. From a result by Upsensky, we get

F (θ) = [PQRS] = ab− bl cos θ − la| sin θ|+ 1

2
l2| sin 2θ|
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To find the volume of the region of the domain for which the corresponding needle will lie
completely inside ABCD, we integrate over all possible θ to get

V =

∫ π
2

−π
2

F (θ)dθ = πab− 2bl − 2al + l2

Therefore, since the volume of the domain is πab, the probability that a needle lands on
the boundary of a rectangle is given by the complement of the probability that a needle
lands inside a rectangle and is equal to

p =
2l(a+ b)− l2

πab
■

This also gives us another way of approaching Buffon’s Needle Problem in one dimension
by considering a = ∞. Then, we get

lim
a→∞

p = lim
a→∞

(
2l

πb
+

2l

πa
− l2

πab

)
=

2

π

l

b

Using Mathematica, we get the following probability plot for 0 < l < 1, 0 < a < 10 and
fixed b = 1.

6. Experiments with Buffon’s Needle Problem

Buffon’s Needle Problem is famous for allowing one to experimentally determine the value
of π in a simple fashion. However, this method is poor in practice,as it takes many trials
to obtain a good approximation for π. A result by O’Gorman showed that it takes approxi-
mately 102n+2 trials to obtain n digits of accuracy. Therefore, if one was able to toss a needle
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every second and record its outcome, it would take 11.57 days to attain two decimal places
of accuracy, which is very inefficient.

A close approximation of π using this method was Lazzarini’s approximation who obtained
1808 crossings out of 3048 trials to obtain π ≈ 3.1415929. However, this result can be
attributed to extreme luck, as a difference of one crossing could significantly change the
approximation or data manipulation, with 1808 being a multiple of 13, 5

6
(3048) being a

multiple of 355 and π ≈ 355
113

being a well-known approximation of π. To be 95% confident
of achieving a similar approximation, one would need to drop approximately 134 trillion
needles. As a result, questions have arisen over whether or not Lazzarini truly performed
the experiment.

Other experiments have been performed as well to approximate π to a difference of less
than 0.02. Experiments performed by astronomor R. Wolf with a needle of length 36 mm
and lines at distance 45 mm apart yielded 2532 crossings for 5000 trials. This led to the
approximation π ≈ 3.1596 which is close to the real value π = 3.1415 . . . Another experiment
performed by Ambrose Smith had 1213 crossings for 3204 trials and a needle of length equal
to 3

5
the distance between lines. This gave another close approximation with π = 3.1412.

[Mar14] [Ric06] [Ups37] [Wei22b] [Wei22a] [OGo22] [Ram69]
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