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1. Introduction

A polygon is defined as a figure on a plane, closed with at minimum three straight sides.
A simple polygon does not intersect itself nor have any holes. When we refer to a polygon
as we continue, we shall be referring to a simple polygon specifically. If we cut up certain
polygons using straight lines, we can rearrange the smaller polygons these cuts make into
another, different polygon. We shall explore this idea further in equivalence relations in
multiple dimensions and different geometries.

2. Scissors Congruence in 2D

Definition 2.1. If polygons P and Q are decomposed into sets of polygons P1, P2, ..., Pn and
Q1, Q2, ...Qn, and Pi and Qi are congruent for 1 ≤ i ≤ n, then they are scissors congruent.

In the figure above, the square on the left can be cut up into four polygons that can
be rearranged to form the triangle on the right. Thus, the square and triangle are scissors
congruent. This particular example is called a Dudeny dissection, and is a type of hinge
dissection.

Definition 2.2. The degree of decomposability is the minimum number of pieces the first
polygon needs to be broken into in order to reform as the second polygon. If we call our
initial polygon P and our final polygon Q, we can write the degree of decomposability with
notation: σ(A,B).

It is pretty clear that since polygons P and Q are scissors congruent, they have the same
area, as they are made up of the same smaller shapes. However, what about the converse?

Theorem 2.3 (Wallace-Bolyai-Gerwein Theorem). Any two polygons of equal area can al-
ways be split into a finite number of polygons that are pairwise congruent.

Proof. We think of this theorem in terms of equidecomposability instead.
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Definition 2.4. Two polygons are equidecomposable if they can be split into a finite number
of congruent triangles.

Lemma 2.5. Every simple polygon can be triangulated. If a polygon has n sides, it can be
split into n− 2 triangles.

Each triangle can then be divided into a trapezoid and two right triangles with equal
heights.

The two triangles can then be reorientated on the trapezoid to form a rectangle.
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We do this with every triangle that makes up the polygon, and are left with n−2 rectangles.
These rectangles can be decomposed and reformed rather easily to make different rectangles,
each with the same width. Combining all these rectangles, we form one big rectangle.

We repeat this with the second polygon and are left with another rectangle. As these two
rectangles have the same area, they can be decomposed and reformed to form each other.
Thus, any two polygons of equal area are always scissors congruent.

An interactive demonstration of this can be found at: https://dmsm.github.io/scissors-
congruence/. ■

3. The 3D

Theorem 3.1 (Hilbert’s Third Problem). Two polyhedra of equal volume cannot always be
cut into a finite number of polyhedra to make the other.

This was a question posed by David Hilbert in his list of twenty-three mathematics prob-
lems. It was the first to be solved, in the same year itself, by his student Max Dehn. Dehn
confirmed this conjecture by providing an example in which two polyhedra with equal volume
could not be cut to make the other.

With scissors congruence in the second dimension, the only invariant was area. In the
third dimension, we have volume and the Dehn invarient, as shown by Sydler in 1965.

Definition 3.2. We denote the Dehn invarient as D(P ). If polyhedra P is divided into k
different polyhedron, it can be expressed as following:

D(P ) = D(P1) +D(P2) + ...+D(Pk)

Every cube has a Dehn invarient of 0.

Proof. Similar to before, we try to think of it
We begin with Bricard’s Condition.

Theorem 3.3 (Bricard’s Condition). Given two equidecomposable polyhedra P and Q, their
dihedral angles α1, ..., αr and β1, ..., βs satisfy

m1α1 + ...+mrαr = n1β1 + ...+ nsβs + kπ(3.1)

for some integer k and positive integers m1, ...,mr and n1, ..., ns.

Dehn used the following example to prove a counterexample. We choose a regular tetra-
hedron, which has dihedral angles of arccos1

3
. We choose a cube, which has dihedral angles

of π
2
. We can use Bricard’s Condition to express this as:

m1arccos
1

3
= n1

π

2
+ kπ

Solving for k, we get k = m1
1
π
arccos1

3
− 1

2
n1. However the right hand side is irrational, which

contradicts with k, which is an integer. Thus, the tetrahedron is not equidecomposable to
the cube although they have the same volume. ■

4. Further

We could attempt to look further into higher dimensions and across different geometries.
So far, these relations have been found in the second dimension of hyperbolic and spherical
geometries. However, it is yet to be solved for other dimensions or geometries.
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