
SUMS OF 2 AND 4 SQUARES

NEIL MAKUR

Abstract. We prove results stating what numbers can be expressed as the sum of two
integer squares and the sum of four integer squares. We provide standard proofs of both re-
sults, along with investigating Zagier’s One-Sentence Proof, which contributes to the former
result, and using quaternions to provide an alternative proof of the latter result.

1. Sums of Two Squares

We start by looking at what numbers can be written as the sum of two squares.

1.1. Number-Theoretic Proof.

Proposition 1.1. Suppose that m and n are both sums of two squares. Then mn is the sum
of two squares.

Proof. Suppose that m = a2 + b2 and n = c2 + d2. We present a way of deriving the proof
of the theorem, rather than just a single equation. We have that m = (a + bi)(a − bi) and
n = (c+ di)(c− di). Thus,

mn = (a+ bi)(a− bi)(c+ di)(c− di) = (a+ bi)(c+ di)(a− bi)(c− di)

=
(
(ac− bd) + (ad+ bc)i

)(
(ac− bd)− (ad+ bc)i

)
= (ac− bd)2 + (ad+ bc)2.

■

The above result inspires us to look at which primes can be represented as the sum of two
squares, and use the results to figure out what composite numbers can be written as the sum
of two squares.

1.1.1. Prime Numbers. The prime 2 can be written as 12 + 12, so we will only consider odd
primes. First, consider the squares modulo 4:

n 0 1 2 3
n2 0 1 0 1

This table means that, if a number is the sum of two squares, it must be 0, 1 or 2 modulo 4.
In particular, any prime p ≡ 3 (mod 4) cannot be written as the sum of two squares. Thus,
we only have to look at primes p ≡ 1 (mod 4).

Lemma 1.2. If p ≡ 1 (mod 4), then there is some x such that p|x2 + 1. If p ≡ 3 (mod 4),
there is no such x.

Proof. Consider the set {1, 2, . . . , p−1}. Partition it into sets of the form {x,−x, x−1,−x−1},
where x−1 denotes the inverse of x modulo p. These have size 4, except for the following
cases.
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x ≡ −x In this case, 2x ≡ 0 (mod p), so x ≡ 0 (mod p), since p is odd. This cannot happen
by assumption.

x ≡ x−1 In this case, x2 ≡ 1 (mod p), so x ≡ 1 (mod p) or x ≡ p− 1 (mod p). This gives the
set {1, p− 1}, which has size 2.

x ≡ −x−1 In this case, x2 ≡ −1 (mod p). If this happens, x ≡ −x−1 (mod p) and −x ≡ x−1

(mod p), so the set becomes {x,−x}, with size 2.

Most subsets have size 4, except for {1, p − 1}, and possibly one more subset if there is an
x with x2 ≡ −1 (mod p). If there is this extra subset, then p− 1 ≡ 0 (mod 4), and if there
is not, p − 1 ≡ 2 (mod 4). The reverse direction is also clearly necessary. The theorem
follows. ■

Using the above lemma, we can figure out what primes we can express as the sum of two
squares.

Theorem 1.3. If p ≡ 1 (mod 4) is prime, then there are integers x and y with x2 + y2 = p.

Proof. Define the set

X =
{
(x′, y′) : 0 ≤ x′, y′ ≤ ⌊√p⌋

}
.

We have that |X| = (1 + ⌊√p⌋)2 > p. Given any s, we can find distinct (x′, y′), (x′′, y′′) ∈ X
with x′− sy′ ≡ x′′− sy′′ (mod p) by the Pigeonhole Principle. Thus, we have that x′−x′′ ≡
s(y′−y′′) (mod p). Letting x = |x′−x′′| and y = |y′−y′′|, we have that x ≡ ±sy (mod p). By
assumption, (x′, y′) and (x′′, y′′) are distinct, so at least one of x and y is nonzero. Squaring,
x2 ≡ s2y2 (mod p). By our lemma, there is some s with s2 ≡ −1 (mod p). Picking this
s, we have that x2 + y2 ≡ 0 (mod p). Now, 0 ≤ x, y ≤ ⌊√p⌋, so 0 ≤ x2, y2 < p. Hence,
0 ≤ x2 + y2 < 2p. Since at least one of x and y is nonzero, x2 + y2 ̸= 0, so we must have
x2 + y2 = p. ■

1.1.2. Composite Numbers. Now that we know what primes can be written as the sum of
two squares, we can figure out which numbers can be written as such.

Theorem 1.4. A positive integer n can be written as the sum of two squares if and only if,
for every prime p ≡ 3 (mod 4) dividing n, the highest power of p dividing n is even.

Proof. Let us first show that our condition is sufficient. Write out the prime factorization of
n

2ape11 pe22 · · · pekk q2f21 q2f22 · · · q2fℓℓ ,

where the pi are 1 (mod 4), and the qi are 3 (mod 4). We can write the pi as a
2
i + b2i . Thus,

n = (12 + 12)a(a21 + b21)
e1(a22 + b22)

e2 · · · (a2k + b2k)
ek(q21 + 02)f1(q22 + 02)f2 · · · (q2ℓ + 02)fℓ

is the product of terms that are each the sum of two squares, and so is the sum of two squares
itself.

Now, we show that the condition is necessary by induction on n (this is true with n = 2).
Suppose that we can write n = x2 + y2. We show that, if p ≡ 3 (mod 4) divides n, then
p divides both x and y. This suffices, as it means that p2|n, and we can use the result on

n
p2

=
(

x
p

)2

+
(

y
p

)2

by induction. Suppose, for the sake of contradiction, that p ∤ x. Then

x has a multiplicative inverse modulo p. Thus, we have that nx−2 = (xx−1)2 + (yx−1)2.
Reducing modulo p, 0 ≡ 1 + (yx−1)2 (mod p), contradicting our earlier lemma. ■
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1.2. The 1-Sentence Proof. Zagier’s One Sentence Proof provides an alternative way of
showing that all primes congruent to 1 modulo 4 can be expressed as the sum of two squares.
The proof is as follows.

Zagier’s One Sentence Proof. The involution on the finite set S = {(x, y, z) ∈ N3 : x2+4yz =
p} defined by

(x, y, z) 7→


(x+ 2z, z, y − x− z) x < y − z

(2y − x, y, x− y + z) y − z < x < 2y

(x− 2y, x− y + z, y) x > 2y

has exactly one fixed point, so |S| is odd, and the involution defined by (x, y, z) 7→ (x, z, y)
also has a fixed point. ■

This proof is quite dense, so we break it down term by term. We start with defining an
involution.

Definition 1.5. For a set X, a function f : X → X is said to be an involution on X if
f ◦ f = idX .

Given a set X and an involution f on X, we write Fixf (X) for the set of elements fixed
by f . In other words, Fixf (X) = {x ∈ X : f(x) = x}. With this definition, we find the
following result, which motivates the use of involutions in existence proofs.

Proposition 1.6. Given a finite set X and an involution f on X, |X| ≡ |Fixf (X)| (mod 2).

Proof. We partition X into sets of the form Px = {x, f(x)}. Notice that Pf(x) = Px by the
assumption that f is an involution. If x is not a fixed point, then |Px| = 2, while if x is a
fixed point, |Px| = 1. Since |X| =

∑
|Px|, the only terms that contribute modulo 2 are the

fixed points, so |X| ≡ |Fixf (X)| (mod 2). ■

Thus, if we can show that |X| is odd, there must be an odd number of fixed points for
each involution, and so at least one. This is in fact the approach that Zagier uses: he finds
an involution that has exactly one fixed point, meaning that |S| is odd, and so a different
involution also has a fixed point. Let us investigate the involution given, which we will call
f .

• Suppose that (x, y, z) falls into the first case. Then, we have that f(x′, y′, z′) =
(x+2z, z, y−x−z). It is clear that x′ > 2y′, so this falls into the third case. Applying f
again gives (x′′, y′′, z′′) = (x′−2y′, x′−y′+z′, y′) = (x+2z−2z, x+2z−z+y−x−z, z) =
(x, y, z). Thus, f is an involution in this case.

• Suppose that (x, y, z) falls into the second case. Then, we have that (x′, y′, z′) =
(2y− x, y, x− y+ z). We can see that y′ − z′ = 2y− x− z < 2y− x = x′ < 2y = 2y′,
so this falls again into the second case. Applying f again gives that (x′′, y′′, z′′) =
(2y′ − x′, y′, x′ − y′ + z′) = (2y − (2y − x), y, 2y − x− y + x− y + z) = (x, y, z), so f
is an involution in this case.

• Suppose that (x, y, z) falls into the last case. Then, we have that (x′, y′, z′) = (x −
2y, x−y+z, y). We can see that x′ < y′−z′, so this falls into the first case. Applying f
again gives (x′′, y′′, z′′) = (x′+2z′, z′, y′−x′−z′) = (x−2y+2y, y, x−y+z−x+2y−y) =
(x, y, z), so f is an involution in this final case.

It is clear that, if f has a fixed point, it must be in the second case. For this to happen, we
must have 2y−x = x, y = y, and x−y+ z = z. The second is given, and the first two imply
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that x = y. Plugging this back into the defining equation of S gives that x(x + 4z) = p.
Because p is prime, we must have either x = 1 or x + 4z = 1. The latter is impossible, so
we have x = 1 and 1 + 4z = p. This means that the only fixed point is

(
1, 1, p−1

4

)
.

Now, since f has exactly one fixed point, |S| is odd, so the involution g(x, y, z) = (x, z, y)
has a fixed point. Thus, there is some (x, y, z) ∈ S with y = z. This means that p =
x2 + 4yz = x2 + 4y2 = x2 + (2y)2 is the sum of two squares.

2. Sums of Four Squares

2.1. Quaternions. Before proving our main theorem of this section, that every integer can
be expressed as the sum of four squares, we will introduce the quaternions.

Definition 2.1. A quaternion is a number of the form a+ bi+ cj + dk where a, b, c, d ∈ R,
and i, j, and k satisfy the equation i2 = j2 = k2 = ijk = −1. Addition and multiplication
of quaternions are defined as outlined below, with multiplication distributing over addition.

We denote the quaternions as H. Addition is done term-by-term, similar to complex
numbers. Numerically,

(a1+ a2i+ a3j+ a4k)+ (b1+ b2i+ b3k+ b4k) = (a1+ b1)+ (a2+ b2)i+(a3+ b3)j+(a4+ b4)k.

Defining multiplication is a bit harder. To do this, firstly notice that 1
i
, 1
j
, 1
k
are equal to

−i,−j,−k respectively. It is also worth noting that real numbers commute with quaternions
in multiplication. However, when trying to figure out quaternion multiplication, we must
not make the assumption that they commute, as it turns out that they do not.

If we look at the equation i2 = ijk, we can see that jk = i. We can also see that

jk = i ⇒ jki = i2 = j2 ⇒ ki = j.

If we consider the equation k2 = ijk, we can see that ij = k.
We can also show that that quaternions do not commute. Multiplying the equations

ij = k, jk = i and ki = j by i, j, and k on the left respectively, we get that ik = −j,
ji = −k and kj = −i. Putting this all together, we get the following table.

× i j k
i −1 k −j
j −k −1 i
k j −i −1

This allows us to multiply quaternions using the regular properties of multiplication
distributing over addition, and using the fact that the general form of a quaternion is
a+ bi+ cj + dk where a, b, c, d ∈ R. After computation, the result is that

(a1 + a2i+ a3j + a4k)(b1 + b2i+ b3j + b4k) = (a1b1 − a2b2 − a3b3 − a4b4)

+ (a1b2 + a2b1 + a3b4 − a4b3)i

+ (a1b3 − a2b4 + a3b1 + a4b2)j

+ (a1b4 + a2b3 − a3b2 + a4b1)k

Along with addition and multiplication, there are other operations that can be done on
quaternions. The first operation is conjugation. The conjugate of a quaternion, q is denoted
q̄, and is defined as a+ bi+ cj + dk = a− bi− cj− dk. Notice that a quaternions commutes
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with its conjugate: qq̄ = q̄q, and that q1q2 = q̄2q̄1. We can also take the norm of a quaternion
using the formula

|a+ bi+ cj + dk| =
√
a2 + b2 + c2 + d2,

or the formula

|q| =
√
qq̄.

With these, we can define the multiplicative inverse of a nonzero quaternion as

q−1 =
q̄

qq̄
=

q̄

|q|2
.

As |q|2 is a real number, this makes sense to define. We also have that q−1q = qq−1 = 1.

2.2. Hurwitz Quaternions. When proving the four-square theorem, we use Hurwitz quater-
nions.

Definition 2.2. The Hurwitz quaternions are quaternions with either all integer or all half-
integer coefficients. They take the form

E0

2
(1 + i+ j + k) + E1i+ E2j + E3k,

where E0, E1, E2, E3 ∈ Z.

Example. The quaternion 1
2
+ 1

2
i + 1

2
j + 1

2
k is a Hurwitz quaternion, using E0 = 1 and

E1,2,3 = 0. The quaternion 3 + i + 4j + k is a Hurwitz quaternion with E0 = 6, E1 = −2,
E2 = 1 and E3 = −2. We also have that i is a Hurwitz quaternion, with E0,2,3 = 0 and
E1 = 1. However, 1

2
+ 5i+ 7

2
j + 4k is not a Hurwitz quaternion.

In a Hurwitz quaternion, all coefficients are either integers or half-integers. Thus, we can
also write Hurwitz quaternions as

α = a1 + a2i+ a3j + a4k or α =
2a1 + 1

2
+

2a2 + 1

2
i+

2a3 + 1

2
j +

2a4 + 1

2
k.

This gives us

|α|2 = a21 + a22 + a23 + a24
or

|α|2 = a21 + a22 + a23 + a24 + a1 + a2 + a3 + a4 + 1,

which is an integer.
We will need to break primes into Hurwitz quaternions in our proof. To prove that this is

possible, we have to establish a few lemma.s

Lemma 2.3. Any odd prime p divides at least one number of the form 1 + x2 + y2.

Proof. Let

X = {x2 : 0 ≤ x ≤ ⌊p/2⌋} Y = −1−X.

These both contain ⌊p/2⌋+ 1 residues modulo p. Since there are a total of p residues, there
must be some intersection. This means that there are x and y with x2 ≡ −1− y2 (mod p),
so that p|1 + x2 + y2. ■

Lemma 2.4. For any quaternion q = a1 + a2i+ a3j + a4k, where a1, a2, a3, a4 ∈ Q, there is
a Hurwitz quaternion α with |q − α|2 < 1.
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Proof. Let b1 be an integer or half-integer with |a1 − b1| ≤ 1
4
. Pick b2, b3, b4 to be integers of

half-integers (the same as b1) with |aℓ − bℓ| ≤ 1
2
for ℓ = 2, 3, 4. Let α = b1 + b2i+ b3j + b4k.

Then,

|q−α|2 = (a1−b1)
2+(a2−b2)

2+(a3−b3)
2+(a4−b4)

2 ≤
(
1

4

)2

+

(
1

2

)2

+

(
1

2

)2

+

(
1

2

)2

=
13

16
< 1.

■

We can now show that we can break primes into Hurwitz quaternions.

Proposition 2.5. Let p be an odd prime. Then, there are Hurwitz quaternions α and β
with p = αβ, such that α−1 and β−1 are not Hurwitz quaternions.

Proof. Let

p|1 + x2 + y2 = (1 + xi+ yj)(1− xi− yj).

For any Hurwitz quaternions α and β, let γ be a Hurwitz quaternion with
∣∣β
α
− γ

∣∣2 < 1.
Then,

|β − αγ|2 < |α|2.
Consider the set

pH + (1− ℓi−mj)H,

where H denotes the set of Hurwitz quaternions. This is clearly closed under addition and
multiplication on the right by Hurwitz quaternions. If α is a nonzero element of this set
of minimal norm, we claim that this set is equal to αH. For any β in the set, there is a
Hurwitz quaternion γ with |β − αγ|2 < |α|2, and so |β − αγ| must be 0 by the definition
of α. This establishes that pH + (1 − ℓi − mj)H ⊆ αH, and the reverse inclusion follows
from the closure under multiplication on the right. In particular, we can write p = αβ for
some Hurwitz quaternion β. If β−1 were a Hurwitz quaternion, we would be able to write
1− ℓi−mj as a Hurwitz-quaternion-multiple of p. However, 1

p
− ℓ

p
i− m

p
j is not a Hurwitz

quaternion for odd p. If α−1 were a Hurwitz quaternion, we would have that αH = H, so
that

(1 + ℓi+mj)H = (1 + ℓi+mj)pH + (1 + ℓi+mj)(1− ℓi−mj)H ⊆ pH,

meaning that p divides 1 + ℓi + mj, creating the same contradiction as before. Thus, we
can write p = αβ, where α and β are Hurwitz quaternions whose inverses are not Hurwitz
quaternions. ■

Lemma 2.6. Let α be a Hurwitz quaternion. Then α−1 is a Hurwitz quaternion if and only
if |α|2 = 1.

Proof. Suppose that α−1 is a Hurwitz quaternion. Then |α|2 and |α−1|2 are positive integers
whose product is 1. Thus, they are both 1. If |α|2 = 1, then α−1 = ᾱ is a Hurwitz
quaternion. ■

2.3. A Quaternionic Proof. We have a similar result to the two-squares case.

Lemma 2.7. Suppose that m and n are both sums of four squares. Then mn is the sum of
four squares.
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Proof. We have that

|q1q2|2 = q1q2q1q2 = q1q2q̄2q̄1 = q1|q2|q̄1 = |q1| · |q2|.
Now, if m is the sum of four squares, we can write m = |q1|, where q1 is a quaternion
with integer coefficients. Similarly, we can write n = |q2| for a quaternion q2 with integer
coefficients. We have that

mn = |q1| · |q2| = |q1q2|,
which is the norm of a quaternion with integer coefficients. Thus, mn is the sum of four
squares as well. ■

We can now prove that any integer is the sum of four squares.

Theorem 2.8. Any integer can be written as the sum of four integer squares.

Proof. It suffices to prove this for primes, and since 2 = 12+12+02+02, we only consider odd
primes. Let p be an odd prime, and write p = αβ for Hurwitz quaternions with |α|2, |β|2 ̸= 1.
We then have that p2 = |p|2 = |αβ|2 = |α|2|β2|. These are both integers greater than 1,
and so |α|2 = |β|2 = p. If α has integer coefficients, we are done, so suppose that α has
half-integer coefficients. Let

ω =
±1± i± j ± k

2
be chosen such that γ = ω + α has even integer coefficients. Then,

p = |α|2 = |γ − ω|2 = (γ − ω)(γ − ω).

Since |ω| = 1, we can multiply by ω̄ on the left and ω on the right to obtain that

p = ω̄pω = ω̄(γ − ω)(γ − ω)ω = ω̄(γ − ω)(γ̄ − ω̄)ω = (ω̄γ − 1)(γ̄ω − 1).

Since γ has even integer coefficients and ω has half-integer coefficients, ω̄γ − 1 has integer
coefficients. Let α′ = ω̄γ − 1. We have that

|α′|2 = |ω̄γ − 1|2 = |ω̄|2|γ − ω|2 = 1 · |α|2 = p.

Thus, we have found a way to write p as the sum of four squares. ■

2.4. A Number-Theoretic Proof. Recall that an odd prime p divides at least one number
of the form 1 + x2 + y2. Recall further that, from the proof of this statement, we can take
0 ≤ x, y ≤ ⌊p/2⌋. Then,

1 ≤ 1 + x2 + y2 ≤ 2p2 − 4p+ 6

4
<

p2

2
.

Thus, we can write

0 < x2 + y2 + 12 + 02 = mp <
p2

2
for some integer m. Thus, there are a, b, c, d with

0 < a2 + b2 + c2 + d2 = mp <
p2

2
.

We will use this result in an alternate number-theoretic proof that any integer is the sum of
four squares.

Lemma 2.9. If n is even and is a sum of four squares, then n
2
is also a sum of four squares.
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Proof. Suppose that n = a2+ b2+ c2+d2. Then, an even number of a, b, c, d are even. Thus,
we can assume that a and b have the same parity, and c and d have the same parity. We
have that

n

2
=

(
a− b

2

)2

+

(
a+ b

2

)2

+

(
c− d

2

)2

+

(
c+ d

2

)2

.

■

Altenate Proof of Theorem 2.8. We once again only have to show this for odd primes (2 =
12 + 12 + 02 + 02). Suppose that p is an odd prime. There is some m < p

2
with a2 + b2 +

c2 + d2 = mp. Take m to be minimal with this property. If m were even, then m
2
p could

be expressed as the sum of four squares, so m is odd. If m = 1, we are done, so suppose
that m > 1. If m|a, b, c, d, we could divide by m2 to get a representation of p as the sum
of four squares, so suppose that m does not divide at least one of these. Take w, x, y, z
such that w ≡ a (mod m), x ≡ −b (mod m), y ≡ −c (mod m) and z ≡ −d (mod m), and
|w|, |x|, |y|, |z| ≤ m−1

2
. We have that

0 < w2 + x2 + y2 + z2 = mk < 4

(
m− 1

2

)2

= (m− 1)2

for some integer 0 < k < m. Now,

m2kp = (aw − bx− cy − dz)2 + (ax+ bw + cz − dy)2

+ (ay + cw + dx− bz)2 + (az + dw + by − cx)2,

and all of these squares are divisible by m2. Thus, we can divide out by m2 to show that kp
is a sum of four squares, contradicting m’s minimality. We therefore have that m = 1. ■
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