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1. INTRODUCTION

Quadratic reciprocity deals with the fundamental question of characterizing which num-
bers can be expressed as perfect squares under some modulus. That is:

Definition 1.1. We say that an integer a is a quadratic residue modulo n iff there exists an
x for which: 2% = a (mod n).

If n is not a prime power, then we can reduce determining if a is quadratic residue to
determining if it is a quadratic residue modulo various prime powers. To see this, suppose
that n = ny - ny, where ged(ny,ng) = 1. Then, a is a quadratic residue modulo n iff it is a
quadratic residue modulo n; and ns, by the Chinese Remainder Theorem.

Instead of focusing on prime powers, we’ll focus on primes.

Proposition 1.2. There are ’%1 quadratic residues in the range [0,p — 1] N Z.

Proof. Let us imagine the multiset of quadratic residues, taken modulo p: {0?,12,22,32, ... (p—
1)?}. We know that we have some repeated elements, namely

== (r—y) - (r+y)=0=z=yorz=—y.

This tells us that the multiset repeats elements z? and (p — z)?> = x2. That is, if p is an odd

prime (p # 2), then each element in the multiset is repeated twice, with the exception if 0%,
which occurs only once. It thereby follows that there must be ’%1 quadratic residues in the

range [0,p — 1]. |
Definition 1.3. There’s a useful notation called the Legendre symbol: <%> It is denoted:
0 pla
a
(]—9) =<1 a is a quadratic residue modulo p.

—1 ais not a quadratic residue modulo p.
This notation lends way to some interesting properties:
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Proposition 1.4 (Euler’s Criterion).

aP~ V2 = (%) (mod p).

Proof. 1t is easy to show that it holds when p = 2. In the ensuing paragraphs, we will
assume that p is an odd prime. Trivially, if p|a, then we know that a®~/2 = 0 (mod p) for
all primes p. Now suppose that a is a quadratic residue modulo p:

?=a=—= (x2)(p_1)/2 = qP V2 — P71 = PD/2 (mod p).

We know by Fermat’s Little Theorem that if ged(x,p) = 1, then zP~' = 1 (mod p). Hence
it follows that Euler’s criterion holds for quadratic residues.
What about for quadratic nonresidues? We know that aP~1/2 = 1 for exactly 1’%1 values of

a € [1,p — 1] and likewise, a»~1/2 = —1 for ’%1 values of a € [1,p — 1]. Since, by m, there

are p%l nonresidues and residues and since Euler’s crition holds for quadratic residues, it

must be the case that a?~1/2 = —1 for nonresidues. Thus, Euler’s criterion stand true. W

There are two immediate and important consequences of this:

Corollary 1.5. (%) <§> = <“7})> .

Corollary 1.6. (%) = (9) if a=b (mod p).

p

2. GAuss Sums ProoFr

Perhaps the most elementary and well-known proof of Quadratic reciprocity utilizes Gauss
sums. We define:

Definition 2.1. g, = 37} <fo> ¢

For our purposes, ¢, is a primitive pth root of unity. It doesn’t matter which root of unity
exactly, so you can assume (, = e*™/? if you prefer.

Lemma 2.2. g, = (%) g1-

()=S0 (2)e-S(2)

Instead of iterating over ¢, we can iterate over at, equivalently:

Proof.

a 2= [ at? .  (a t2 " “/a ¢
)= (5)e=2()()e=-X()e=n
from which the desired follows. [ |

Lemma 2.3. ¢2 = (—1)®7Y/%,
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Proof.

1

=55 () (e T8 (e

s=0 r=0 s=1 r=

Instead of iterating over r, we can iterate over sr:

ZZ( Mg ZZ( )<=Z( )ZC

s=1 r=1 s=1 r=1 r=1
We know that the sum of the roots of unity is 0. Therefore,

gi=m-1 (p;l) - pi (%) = p(=1)*V72,

p r=1
from which the desired follows. [ |

Theorem 2.4 (Quadratic Reciprocity Theorem). For odd primes p,q:

(E) <2> = (—1)®~D@D/1,
q p
Proof. Notice that:

(50 = ()

p q

We also have another expression for gf straight from the definition of g; :

gl = (; (]é) cz)q S (%)c =g, (mod q).

=0
Putting this all together, we have that:

(P;l) P

q
a1 AP = = (—) g1 (mod q).
It thereby follows that:

0= 0 ()0 = 0@

The Quadratic Reciprocity theorem follows. [ |

()

p
q

3. EVALUATING THE SIGN OF THE GAUSS SUM

Recall earlier that we found g7, but we were unable to find g; itself (that is, evaluate the
sign of g1). To do this, we note that we can instead find Z;} Cff This is precisely the trace
of the matrix A formed by:

a.; = CY.
To evaluate the trace, we will find the eigenvalues and their multiplicities of the matrix A.
Before, we start, some preliminaries:



4 MARIA CHRYSAFIS
Lemma 3.1. [['Z} (1 -¢) =n.
Proof. Recall that:

n—1
H(I - C’ri) =" — 17
s=0
by the definition of roots of unity. As an immediate consequence, we know that:

n—1 n—1

s " —1 ;
If we let x = 1, then we see that:
n—1
[[a-¢)=n
s=1

Lemma 3.2. (det (A))2 - (_1)”(”—1)/2 .

Proof. Since the rows of A are geometric series, A is a Vandermonde matrix and therefore
we can compute the Vandermonde determinant. It immediately follows that:

det (A) =TT T €~

r=0 s=r+1

We'd like 7, s to be symmetrical, that way the expression is more workeable. This motivates
the idea to work with (det (A))*:

(det (A))* = (—1" V2 T T (¢~ <)

r=0 s#r

SECSE | r3 )

u=0 v#0
By [3.1] we can reduce the expression to the following:

n—1
(_1)n(n—1)/2 H nC:f _ (_1)n(n—1)/2nn
u=0

from which the desired follows. [ |

However, crucially, the sign of the determinant remains unknown. To deduce the sign, we
will need to utilize a new method.

Proposition 3.3. Assuming n is odd, [['—) e =1
Proof.
n—1 n n—1s—1 n—1 n—1
H H 77;?8 _ H Hn:;ﬂ _ H ,,722+s-(571)/2 _ H nz(nfl)Q/Q.
r=0 s=r+1 5=0 r=0 5=0 5=0
Since n is odd, this evaluates to 1, as per the desired. [ |

Lemma 3.4. When n is odd, det (A) = i"("=1)/2pn/2,
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Proof. Recall, as before that

det (A) =TT T < —¢-
r=0 s=r+1

If we let 7, = e™/™, then we have:

n—1 n
r=0 s=r+ 1
n—1 n
=TI II (ot (s =)

r=0

S=Tr
We know that e* — e™* = cos(x) + isin(z) — cos(—z) — isin(—z) = 2isin(z). Therefore, we
can reduce the expression to:

det (A H H 7't 2isin <@>

r=0 s=r+1

Using [3.3] we can reduce it to:

det (A) :¢"<"—1>/2ﬁ ﬁ 2sin (@)

r=0 s=r+1

We already know the square of det (A), so we don’t need to evaluate the inner summand.
Instead, we can immediately deduce that det (A) = i*("~Y/2p7/2 since we know that the
inner expression is positive. [ |

We want to find the trace of A.
Lemma 3.5. For odd n, |tr(A)|* = n.
Proof. We know that, by definition,

n—1 n—1 n—1

tr(A) =) ¢ = tr(A)? = G

Since the sum of quadratic residues equals the sum of nonquadratic residues and (%) =

(7))

n—1 n—1 n—1 n—1 n—1 n—1
2
E § ré—s* __ r+s)(r—s) __ re42rs
Cn - Cn - Cn )
r=0 s=0 r=0 s=0 r=0 s=0

if we iterate over r + s instead. It follows that:

n—1 n—1

ZCT ZCQTS_n_i_ZCr Z<2rs:n

We would like to determine the coefficient of tr (A):
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Lemma 3.6.

_Jv/n ifn=1 (mod4)
tT(A)_{i\/ﬁ ifn=3 (mod4)

Proof. Let’s try to evaluate A% The element (r,s) is:

nz_fct(r+s)_ n ifr+s=0 (mod TL)
—" 0 ifr4+s#£0 (modn)’

It immediately follows that A* = In2, so the eigenvalues of A? are 4+/n. Say we have an
eigenvalue of A? of (zg,x1,...,2,_1). Then, we know that for the eigenvalue n:

AX = nX — x, = T,p—_k-

The dimension of the eigenspace corresponding to n is ”T“, so that corresponding to —n
must be 25+, If a, b, ¢, d are the multiplicities of /n, —y/n, iy/n, —iy/n, then, because of the
eigenvalues of A2

n+1 n—1

b= d=
a+ ,C+ 5

We also know that:
ltr (A))? = ((a—b)* + (c — d)*)n = (a — b)* + (c — d)* = 1.

This thereby implies that either a = b and ¢ —d = +1 or ¢ = d and a — b = £+1. Coupled
with our previous equation, we can deduce that if n =1 (mod 4), then c—d = 0,a—b = +1
and if n =3 (mod 4), then c —d =+1,a — b= 0.

We also know the determinant of the aforementioned matrix:

det (A) = (\/ﬁ)a (_\/ﬁ)b (\/ﬁz)c (—\/ﬁz’)d _ nn/2(_1)b+dic+d — /2;20ket3d _ n/2n(n—1)/2
If n = 1 (mod 4), then ¢ = d, so ¢ + 3d is a multiple of 4 and % = (—1)® = "("~D/2 =
(—=1)"(n=1/4 Then,
n+1 2b_n+1 nn—1) -n*+2n+1_  —(n—1)?
2 2 2 2 - 2
It therefore follows that a—b = 1. In the case where n = 1 (mod 4), we see that tr (A) = \/n.
If n=3 (mod 4), then a = b and ¢ — d = %1, so:
n—1 ~n—1 n—-1 nn-3) _

c—d—(c—l—d)—Zd—T—Qd: 5=y 5 =1 (mod 4).

Hence, if n = 3 (mod 4), then tr (A) = iy/n. |

As desired, we have found the sign of the quadratic gauss sum g;.

a—b = (a+b)—2b = +1=1 (mod 4).

4. RESOURCES USED

I used the following resources:

e https://www.math.purdue.edu/~jlipman/MA598/GaussSumSign.pdf
e Number Theory Euler Circle Book

EuLEr CIRCLE, PALO ArTO, CA 94306
Email address: maria.chrysafis. junior@gmail.com
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