
SETS, FUNCTIONS, AND THE CONTINUUM HYPOTHESIS (CHAPTER 19 IN PFTB)

ATTICUS KUHN

Date: March 20, 2022.
0



CONTENTS

1. Introduction 1
2. Basic Set Theory, Cardinality, and Bijections 1
3. Countability and Bijections 1
4. Cardinal and Ordinal Numbers 3
5. Easton’s Theorem 4
6. Equivalent Statements 5
7. Conclusion 5
References 5

1. INTRODUCTION

In 1910, mathematicians Bertrand Russel and Alfred Whitehead wrote Principia Mathematica
in order to formalize all of mathematics using rigorous definitions and proofs. The tool that they
used to accomplish this monumental feat was set theory. In this paper, we will look at some of
the most interesting results of set theory. It will be based on chapter 19 of Proofs from the Book
“Sets, functions, and the continuum hypothesis” by Aigner and Ziegler, although we will present
different proofs.

2. BASIC SET THEORY, CARDINALITY, AND BIJECTIONS

One of the most basic concepts of a set is its cardinality.

Definition 1. Given a set, the cardinality of that set is loosely defined as the size of that set.

For a finite set, the cardinality is the number of elements in the set. For example, the cardinality
of {4, 5, 6} is 3. We write the cardinality of X with |X|, so for example |{4, 5, 6}| = 3. The
traditional way of proving the cardinality of a set is with a bijection

Definition 2. A bijection φ : A → B is a mapping between 2 sets such that it is
(1) Surjective: for all a ∈ A, there exists b ∈ B such that φ(a) = b,
(2) Injective: for all b ∈ B, there exists an a ∈ A such that φ−1(b) = a

In short, a bijection is just a correspondence between 2 sets. Injective and surjective each give
an inequality. If φ : A → B is injective, then |A| ≤ |B|, and if it is surjective, then |A| ≥ |B|.

Using bijections, we can prove properties about the cardinality of sets.

Theorem 3. If there is a bijection between 2 sets they have the same cardinality.

For example, consider the sets {1, 2, 3} and {4, 5, 6}. They have the same cardinality because
there exists the bijection φ : 1 → 4, 2 → 5, 3 → 6. This theorem is important because it works
even for infinite sets.

3. COUNTABILITY AND BIJECTIONS

Once we have the power of bijections, we can make statements about the size of infinite sets.
First, the concept of Countability.

Definition 4. A set is countable if it has the same cardinality as the set of natural numbers N.
1



Using Theorem 3, we can also say a countable set has a bijection to N For example, the set of
even numbers {2, 4, 8, · · · } because we can construct the bijection φ : x → 2x. Another example
is the set of all integers Z = {· · · ,−2,−1, 0, 1, 2, · · · } is countable due to the bijection

φ(x) =

{
2x x ≥ 0

−2x− 1 x < 0

Example 5. (0, 1) → (−∞,∞) is a bijection

Proof. Consider the function f(x) = tan(π(x − 1
2
)). This function is a bijection between (0, 1)

and (−∞,∞). To see why, look at 1. □

FIGURE 1. An example of a bijection between (0, 1) and (−∞,∞)
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Example 6. P(N) → 3N is a bijection

For notation, P(N) is the power set of natural numbers, and 3N is the set of ternary strings.

Proof. The first step is to have a bijection from f : P(N) → 2N. For each element a ∈ N and every
subset S ⊂ N , we can define a function f:
f(a) = 0 if a /∈ S
f(a) = 1 if a ∈ S
This proves a bijection between 2N and P(N) exists and therefore, |2N| = P(N). Next, define a

bijection between 2N and 3N;for this map g : 0 → 1, 1 → 01, 2 → 00 so for instance 0121 · · · gets
mapped to 1010001 · · · its easy to see this is a bijection. □

Theorem 7. R is uncountable

The most common proof that R is uncountable is Cantor’s diagonalization argument (presented
in PFTB). I will give a different proof.

Proof. Imagine we had a list of all real numbers

l = {r1, r2, r3, r4 · · · }
Choose 2 arbitrary real numbers, call the smaller α1 and the larger β1. Scan the list of reals from
left to right until the first pair of reals between α1 and β1, call these numbers α2 and β2. We use
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this process to create 2 sequences as in figure 2. Take the limit of these sequences, call them α∞
and β∞. These limits exist because the sequences of α and β are monotonic and bounded. If
α∞ ̸= β∞, then there would be some number between them, for example α∞+β∞

2
, which is not on

the list of reals, a contradiction. If α∞ = β∞, then call η = α∞ = β∞. Since η is a real, it must
have an index on the list of reals, but it cannot have a finite index because an infinite number of α
and β terms preceded in on the list, which means η cannot have a finite index on the list of reals, a
contradiction. In either case, we cannot have a list of all reals, so R must be uncountable. □

In other words, we have shown that |N| < |R| because there is an injective function ( e.g
φ : x → x) but we have shown there does not exist any bijective function.

FIGURE 2. The series of α and β

α1 α2 α3 β1β2β3
η

4. CARDINAL AND ORDINAL NUMBERS

Cardinal and ordinal numbers test our intuition about what a number is, and they both tackle
infinity in different ways. We will look at both.

Definition 8. Cardinals

The cardinals are a generalization of the natural numbers. The cardinality of a finite set is simply
the number of elements in that set. We use the notation |X| to denote the cardinality of some set
X. We have already seen by theorem 7 that |R| > |N|, and the Continuum Hypothesis is related to
this relation on the cardinals. We denote the cardinal number of the natural numbers N to be ℵ0,
and the cardinal number of the real numbers R to be ℵ1.

Theorem 9. (Continuum Hypothesis) There does not exist a set c such that |N| < |c| < |R|

Another way of stating the Continuum Hypothesis in the language of before is 2ℵ0 = ℵ1, where
2n represents the size of the power set of n, because a real number can be written as a sequence of
integers via its decimal expansion.

The Continuum Hypothesis is actually independent of the axioms of mathematics, meaning there
is a consistent model of mathematics where it holds, and a consistent model of mathematics where
its negation holds.

An alternate generalization of the natural numbers to infinity is the Ordinals.

Definition 10. An ordinal is the sizes of a well ordered set.

We first must understand what it means to be well ordered.

Definition 11. A set is well ordered if it obeys the 3 properties
(1) Transitivity: if x ≤ y and y ≤ z then x ≤ z
(2) Reflexivity: x ≤ x
(3) Antisymmetry: if x ≤ y and y ≤ x then x = y

For some examples of ordinals, we have 0 = {}, 1 = {0}, 2 = {0, 1} etc. In general, the
successor of a, called a+, is defined as a+ = {a} ∪ a This goes on until ω = {0, 1, 2, 3, · · · }. We
can repeat this process to get ω+1 = {0, 1, 2, 3 · · · , ω}. This is a key difference between cardinals
and ordinals. ω and ω+1 have the same cardinality because there is a bijection between then (e.x.
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f : ω → 0 , f : x → x + 1) but there does not exist an order-preserving bijection, so they have
different ordinalities. This process can continue for ω+1, ω+2, ω+3, · · · , ω+ω and so on. The
ordinals challenge our intuitions about infinities, but are a very fun topic.

Using the cardinal numbers, one interesting theorem is Konig’s Theorem.

Theorem 12. Konig’s Theorem: If I is a (possibly infinite) set, and |Ai| < |Bi| for all i ∈ I ,
then |

∑
i∈I Ai| < |

∏
i∈I Bi|, where

∑
i∈I Ai denotes the disjoint union and

∏
i∈I Bi denotes the

Cartesian product.

Proof: By the definition of <, we have an injective map fi : Ai → Bi. We are going to construct
an injective map f :

∑
i∈I →

∏
i∈I Bi.

Choose some points xj ∈ Bj \ Aj . Let πj :
∏

iBi → Bj be the product projection (i.e. a
projection is taking out the jth element from a product) and let ij : Aj →

∑
i Ai the coproduct

inclusion (i.e. an inclusion is just taking the union with xj), define a map f:
∑

j Aj →
∏

j Bj :

f(x) =

{
(πj ◦ f ◦ ik)(a) = fj(a) if a ∈ Ak and j = k

= xj if a ∈ Ak and j ̸= k

One can prove that f is injective, and so |
∑

i Ai| ≤ |
∏

i Bi|.

5. EASTON’S THEOREM

The generalization of the statement that the Continuum Hypothesis is independent of the axioms
of mathematics is Easton’s Theorem, which generates a whole set of related statements, all of
which are independent of the axioms of mathematics. First we need some necessary definitions.

Definition 13. A set is partially ordered if it has an ordering relationships ≤ on the elements, and
this relationship obeys the 3 laws of defintion 11.

For example, the real numbers along with ≤ form a partially ordered set, as do the power set
P(X) along with ⊆. The next definition we need is that of Cofinality.

Definition 14. Given a partially-ordered set Q, the cofinality of Q is the largest cardinal number
κ such that every function f:[κ]→Q (where [κ] is any set of cardinality κ) has an upper bound.

In other words an element x of Q such that if y belongs to the image of f then y < x. An
example is that the cofinality of ℵ0 (the cardinal number of N) is ℵ0. This is because any function
f : N → N cannot reach arbitrarily high.

Theorem 15. Konig’s Corollary: For any infinite cardinal κ, the cardinal 2κ has cofinality greater
than κ.

Konig’s Corollary is related to confinality, and it follows as a consequence from Konig’s The-
orem (see theorem 12). Proof: κ has the same cardinality as κ × κ, so 2κ = 2κ×κ = (2κ)κ.
Let (λα)α<κ be an increasing sequence with least upper bound 2κ, then we have surjection f :∑

α<κ λα → 2κ = (2κ)κ. Since 2κ =
∏

i∈κ 2, we have f :
∑

α<κ λα →
∏

i∈κ 2, but since 2 < λa,
this contradicts Konig’s Theorem. Thus, 2κ must have a greater cardinality than κ.

Theorem 16. Easton’s Theorem: If f : κ → κ is a function on the cardinals such that
(1) f is increasing (preserves the order of ≤)
(2) κ is less than the confinality of f(κ). (see definition 14)

Then there is a model of ZFC such that 2κ = f(κ).
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Easton proved this theorem using forcing. Note that CH is a special case of Easton’s Theorem,
in the case that f(κ) = 2κ It is a generalization of CH that says that not only is CH independent of
ZFC, but describes an infinite family of statements that are all independent of ZFC (see [Eas64]).

6. EQUIVALENT STATEMENTS

One consequence of the Continuum Hypothesis is that many equivalent statements keep appear-
ing. One example is Wetzel’s Problem, covered in PFTB. Another example is Freiling’s axiom of
symmetry.

Axiom 17. (Freiling) Let f : x → Ax be a function from the real numbers x ∈ [0, 1] to the
countable subsets of such reals A ⊂ [0, 1]. Then, there exist two real numbers x and y such that
x ̸∈ f(y) and y ̸∈ f(x).

Frieling’s intuition for this was to imagine throwing 2 darts at the real number line, and they land
at x and y respectively. The number y is almost certainly not in f(x) because f(x) is countable
and [0, 1] is uncountable.

Theorem 18. CH is equivalent to the negation of Frieling’s axiom

Proof: (Forward direction). Suppose 2ℵ0 = ℵ1 . Then there exists a bijection σ : N → ℘(N) ,
where ℘(S) denotes the power set of some set S. Define f : ℘(N) → ℘(℘(N)) via f : σ(α) 7→
{σ(β) : β ⪯ α} . The function f satisfies the requirements of Frieling’s Axiom, yet there do not
exist 2 numbers x,y by Frieling’s axiom because one of x,y must be less than the other, so if x < y,
then x ∈ f(y), contradicting Frieling’s Axiom.

(Backward direction) Suppose Frieling’s axiom doesn’t hold. Then, choose some f that satisfies
the requirements of Frieling’s axiom. Define an ordering relation on ℘(N), call it ≤f , where
A ≤f B if A ∈ f(B). Define a strictly increasing chain of sets (Aα ∈ ℘(κ))α<κ+ as follows:
at each stage choose Aα ∈ ℘(κ) \

⋃
β<α f(Aβ). This sequence is cofinal in the order defined,

i.e. every member of ℘(κ) is ≤f some Aα . Thus we may define a map g : ℘(κ) → κ+ by
B 7→ min{α < κ+ : B ∈ f(Aα)}. So ℘(κ) =

⋃
α<κ+ g−1{α} =

⋃
α<κ+ f(Aα) which is union of

κ+ many sets each of size ≤ κ . Thus 2κ ≤ κ+ ·κ = κ+ and we are done because this is equivalent
to CH.

7. CONCLUSION

While the case can be made for either CH or ¬ CH being the better model for set theory, another
view is the multiverse view. In the multiverse view there are many models of set theory, but no one
“true” model. The various models are all equally valid, but some are more useful or than others.

In the universe view the continuum hypothesis is a meaningful question that is either true or
false, but in the multiverse view, CH depends on the model of set theory selected. This is one way
to “resolve” the CH debate.
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