APPLICATIONS OF ADJACENCY MATRICES

ARAV BHATTACHARYA

1. INTRODUCTION

There are many approaches to solving problems in graph theory. One of these approaches
uses matrices to encapsulate graphs:

Definition 1.1. The adjacency matriz of a finite graph with n vertices is an n by n matrix
whose entries indicate whether pairs of vertices are adjacent in the matrix.

AN
AN

3

Figure 1. A graph G with vertices indexed

The graph above in Figure |1 has adjacency matrix

A=

— == O
O = O =
— O~
O~ O

Notice that an undirected graph will have a symmetric adjacency matrix. This is impor-
tant because we can apply the spectral theorem, which says that every symmetric matrix is
orthogonally diagonalizable, on these matrices. In particular, this means that we can factor
the adjacency matrix A into a product of an invertible n x n matrix M whose columns are
(possibly orthonormal) eigenvectors of A, a diagonal matrix D with diagonal entries that

are eigenvalues of A, and M~!. For example, the matrix A above can be diagonalized as
A= MDM~! where

1 1
-1 0 1-5 1+ -1 0 0 0
0 —1 —v2 V2 0 0 0 0
M: 1 1 ,D: .
1 01— 1+ 0 0 1—+2 0
2 V2
0 1 1 1 0 0 0 14+v2

Date: March 21, 2022.

2 ARAV BHATTACHARYA

Often, an explicit diagonalization of the adjacency matrix is less important than certain
properties of adjacency matrices that arise as a result of them being symmetric. One such
property is that the eigenvalues of A? are the squares of the eigenvalues of A, because
A2 = MDM*MDM™' = MD*M~! we can diagonalize A? as M D?M~!. In general, we
can diagonalize A™ as M D"M !, which the reader can verify.

Because of the prevalence of using the spectral theorem in graph theory problems where
adjacency matrices are used, the part of graph theory in which this approach to encapsulating
graphs is used is called spectral graph theory.

Another technique that can be useful in graph theoretic problems is creating algorithms
that can traverse a graph and find some desired quality of that graph, such as whether it
contains a given subgraph, whether it is planar, or the length of its minimum spanning tree.
This technique is often used in computer science problems.

Spectral graph theoretic algorithms take a large amount of storage space, because adja-
cency matrices have n? entries. In comparison, an adjacency list can encapsulate a graph
using an amount of storage proportional to the sum of the number of vertices and the number
of edges in the graph (see [CLRS09]). As a result, algorithms using adjacency lists is much
more space-efficient for graphs with relatively few edges compared to vertices. However, for
dense graphs (graphs which have a close to maximal number of edges), adjacency lists and
adjacency matrices take up similar amounts of space and as a result spectral algorithms are
especially useful for these graphs.

In the coming sections, we will discuss some applications of both of these techniques,
ultimately building up to the extremal graph theoretic question of forced subgraphs.

2. FRIENDSHIP THEOREM

We begin by looking at the friendship theorem, which states that if in a group of people
every pair has exactly one common friend, then there is someone who is friends with everyone
(excluding themselves) in the group.

To state this theorem formally, let’s restate its premise in terms of graph theory. We can
represent a group of people with a graph where each person in the group is represented as a
vertex and each friendship is represented with an edge. A graph satisfies the premise of the
friendship theorem if there is exactly one path of length 2 between any two of its vertices,
and this graph satisfies the theorem if it has a vertex that shares an edge with all other

AR

Figure 2. The 3-cycle C3 (left) and butterfly graph (right)

The 3-cycle graph C3 (Figure [2] left) satisfies this premise, and each vertex in this graph
shares an edge with all other vertices within it so it also satisfies the friendship theorem. We

APPLICATIONS OF ADJACENCY MATRICES 3

can also join two copies of C3 at a given point to create a butterfly graph (Fig. [2|right) and
once again verify the theorem using this graph. If we keep repeat this process of adjoining 3-
cycles to each other at a single point, notice that we will continue to get graphs that satisfy
the premise for the friendship theorem. We are now ready to define a general friendship
graph using this process.

Definition 2.1. The friendship graph F,, is a planar graph created by joining n copies of
the cycle graph ('3 with a common vertex.

AVANEEN.#
AR

Figure 3. The friendship graph Fj (left) and general friendship graph F,
(right)

Notice that any graph satisfying the theorem’s condition cannot contain a 4-cycle Cjy,
because opposite vertices in that cycle would have two common neighbors. Informally, the
groups of people that these graphs correspond to would have two people that share two
common friends. Let’s call this fact the Cy-condition. By the C-condition, the friendship
theorem doesn’t hold for infinite graphs. We can show this by taking a 5-cycle C5 and
repeatedly adding common neighbors to all points that don’t yet have a common neighbor.
This process creates an infinite graph H that satisfies the condition of the friendship theorem.
For the sake of contradiction, suppose that H satisfies the friendship theorem. Then there is
a vertex v of H adjacent to all other vertices of H. However, this violates the C4-condition
(see Fig. {)).

Figure 4. A depiction of H, with edges violating the C4-condition in red

Since the friendship graphs all satisfy the friendship theorem, we can conjecture that these
are the only graphs that satisfy the premise of the informal version of the theorem. In fact,

4 ARAV BHATTACHARYA

this conjecture is true and as a result we can write the friendship theorem in graph theory
terms using this conjecture.

Theorem 2.2 (friendship theorem, graph theory version). The finite graphs with the property
that every two vertices have exactly one neighbor in common are exactly the friendship graphs.

We will now build up a proof of Theorem [2.2] but to complete this proof we need the
following lemma:

Lemma 2.3. If the square root of a natural number is rational, then it is an integer.

Dedekind’s proof. Let m be a natural number such that y/m is rational, and let ng be the
smallest natural number with ngy/m € N. If /m ¢ N, then there exists ¢ € N with
0 < /m — ¢ < 1. Setting ny := ng(y/m — £) < ng, we find that n; € N and

nivm = ng(v/m — £)v/m = ngm — £(ngy/m) € N,

since this last expression is a sum of two natural numbers. However, this means that n;
contradicts the choice of ng, thus proving our lemma. [|

Now we are ready to start our proof by contradiction. We begin this proof by assuming
the existence of a counterexample G = (V| F) to the friendship theorem. First, we will show
that G is a regular graph, meaning that all its vertices have the same degree.

AN

——

Figure 5. The construction of G

Z3

(%

2k

Before showing that G is regular, we will first show that any two nonadjacent vertices u
and v of G have the same degree, meaning that d(u) = d(v). Let d(u) := k and label the
neighbors of u as wy, . .., wg. The condition of the friendship theorem means that exactly one
of these w;, say ws, is adjacent to v. Furthermore, exactly one of these w;, say wy, is adjacent
to we. Then v has the common neighbor wy with w;. By the condition of the theorem, v
also has a common neighbor with each of w; (i > 2). Label each of these neighbors as z; (see
Fig. [5| for a rough sketch of this construction). If each z; is not unique, then there exist some
n, m between 2 and k, inclusive, such that z, is adjacent to w,,, w,,, and v, so we would have
a 4-cycle between u, w,, z,, and w,,. Thus by the C4-condition, each z; is unique and thus

APPLICATIONS OF ADJACENCY MATRICES 5

d(v) > k = d(u). By symmetry, we could repeat this process starting at v to get d(u) > d(v)
and thus we have that d(u) = d(v) = k.

To show that G is regular, note that outside of ws, each vertex of G is not a neighbor
of at least one element of {u, v}, so by the result from the last paragraph we know that all
vertices outside of wy have degree k. Lastly, notice that wy must have a non-neighbor so
d(wy) = k as well. Thus G is k-regular, meaning that all vertices of G have degree k.

To find the number of vertices of G, we can sum over the degrees of each of the k neighbors
of u, since each vertex except u has exactly one common vertex with . Thus we counted
every vertex exactly once, with the exception of u which we counted k times. Thus the total
number of vertices of the graph isn =k? — (k — 1) = k* — k + 1.

We can use some standard linear algebra results along with Lemma to finish the proof
of the friendship theorem. We first note that £ > 2, because otherwise the only possible
regular graphs G could be are C or Cs.

We can look at the adjacency matrix A of G, with elements a;; defined as before:

) {1,ifi7éjand{i,j}€E(G)
ij —

0, otherwise

Obviously, A does not encode information about the common neighbors of two points. How-
ever, notice that the matrix A% with elements b;; does:

n
bij: E Qi Qg -
k=1

This property of A% makes it extremely easy to find its entries:

1k 1

where [is the identity matrix and J is the matrix of all 1’'s. We can immediately verify
that J has eigenvalues n (with multiplicity 1) and 0 (with multiplicity n — 1). Thus A? has
eigenvalues k — 1 +n = k? (of multiplicity 1) and k& — 1 (of multiplicity n — 1).

Since A is an undirected graph with no loops (edges that connect a vertex to itself) we
know that A is symmetric with 0’s on its main diagonal and thus A has eigenvalues k
(multiplicity 1) and ++/k — 1. Suppose that r of these eigenvalues are vk — 1 and s are
—Vk —1, with r + s = n — 1. Then since the sum of the eigenvalues of A is equal to the
sum of its diagonal entries, we get that kK +rvk — 1 —svk —1 = 0. Since r # s, this means
that

Vk—-1= i .
5=

By Lemmawe can let h = vk —1¢€ Nso h(s—r) =k, and since k = (Vk —1)*>+1
we find that h(s —7) = h* + 1 so h =1 and thus k = 2. This is a contradiction since k > 2
so we proved the friendship theorem.

6 ARAV BHATTACHARYA

The friendship theorem gives us all the finite graphs with the property that between any
two vertices there is precisely one path of length 2. A conjecture of Anton Kotzig asserts
that this is not possible if the path length is greater than 2:

Conjecture 2.4 (Kotzig’s Conjecture). Let ¢ > 2. Then there are no finite graphs with the
property that between any two vertices there is precisely one path of length €.

Kotzig’s conjecture has been proved for small values of ¢ (see |[Kos88]), but a general proof
has not yet been found.

3. FINDING TRIANGLE SUBGRAPHS

We now turn our attention to a completely different problem: finding triangle subgraphs.
In other words, given a graph G, how can we find a 3-cycle (if there is any) within it? (this
section drew heavy inspiration from |[Mat10])

One obvious method for finding such a subgraph is taking every set of 3 points in our
graph and checking if all 3 points are connected to each other via an edge (see Fig. @

procedure BruteForceTriangle(G=(V,E)):
for {u,v,w} in V:
set T to {{u,v},{v,w},{u,w}};
if T is subset of E:
return {u,v,w};
return null;

Figure 6. A brute-force triangle-finding algorithm

However, BruteForceTriangle seems to be quite inefficient, since in the worst case we
would have to check every single subgraph of 3 points to find a triangle. But how would we
quantify this inefficiency? One way of doing so is by finding this algorithm’s so-called time
complexity.

Definition 3.1 (Big O notation). An algorithm performed on an input with n data points
is said to have time complexity O(f(n)) if there is a constant k& € R such that the algorithm
takes at most kf(n) steps for all n. We say an algorithm with time complexity O(f(n)) has
greater time complexity than an O(g(n)) algorithm if lim % = 00.

Let’s compute the time complexity of BruteForceTriangle. Let’s say that G has n
vertices, and let T'(G) represent the number of steps our algorithm takes. We then have (g)
choices for our set of 3 vertices. We perform a constant number of operations on each set of

vertices (namely, we check for edges up to 3 times), and since

1(6) <3(y) - 3" ot

3 6 6

we find that our algorithm has time complexity O(n?).

Could we create a faster algorithm? Yes, and we can do so via use of the adjacency matrix
A (see Fig.[7).

The key insight in AdjacencyTriangle is that finding a triangle in a graph is the same
as finding two points that both share an edge and have a common neighbor. Remember

APPLICATIONS OF ADJACENCY MATRICES 7

procedure AdjacencyTriangle(G=(V,E)):
set A to a |V| by |V| matrix with all entries O;
index vertices in V from 1 until |V|;
for i:=0 step 1 until [V]:
for j:=0 step 1 until [V]:
if {v[i],V[jl} in E:
set A[i][j] to 1;

// Square is an arbitrary algorithm that squares a matrix
set B to Square(A);

set i and j to 1;
for i:=0 step 1 until [V]:
for j:=0 step 1 until [V]:
if A[i][j] and B[i]l[j] are both not 0: goto O0;

return null;

label O:
for k:=0 step 1 until |V]:
if A[i] [k] and A[k][j] are both 1:
return {V[i],V[j],V[kl};

Figure 7. A triangle-finding algorithm that uses the adjacency matrix

from Section 2| that the matrix A% counts the number of common neighbors two points have.
Thus we can find a triangle in a graph by finding indices %, j such that the 7, j-th element of
both A and A? is nonzero.

The first part of AdjacencyTriangle, which indexed V' and initializes elements of A, takes
O(n?) operations since the indexing takes O(n) operations and the initialization takes O(n?)
operations.

The second part of AdjacencyTriangle computes A% In the naive algorithm for Square,
we add n products of elements of A for each element of A2, taking O(n - n?) = O(n?*) oper-
ations. Incredibly, through more sophisticated algorithms (such as the Strassen algorithm,
described more in [ST69], which is O(n!°627) ~ O(n?87)) we can decrease the time complex-
ity of Square below O(n?). Note, however, that currently even the algorithms Square with
lowest time complexity still have greater time complexity than O(n?).

Although the third part of AdjacencyTriangle has three nested for loops, note that
the innermost for loop (at label 0) will only execute at most once: if it executes then
AdjacencyTriangle will terminate upon its completion. As a result, this final part of
AdjacencyTriangle only takes O(n?) operations.

Since Square is the part of AdjacencyTriangle with highest time complexity, the time
complexity of the whole AdjacencyTriangle algorithm will also decrease below 3 as a result.
Note that these sophisticated algorithms may actually yield slower results for small matrices

8 ARAV BHATTACHARYA

than the naive algorithm. For example, the Strassen algorithm is slower than the naive
approach until around n = 100.

4. EXTREMAL GRAPH THEORY

A\ G

Figure 8. The 3-clique, or triangle, K3 (left) and 6-clique K¢ (right)

In the last section, we looked at an algorithms that detect triangles (see Fig. , left) in a
graph. What if instead we wanted to characterize the graphs that must contain a triangle
subgraph? Thinking about it logically, we can conjecture that if a graph is sufficiently dense
then it must contain a triangle. In other words, if there are enough edges in the graph
relative to its number of vertices, then we can state definitively that it contains a triangle.
The following theorem gives us the exact number of edges necessary:

Theorem 4.1. A graph G = (V| E) on n vertices contains a triangle if it has more than %
edges.

Proof, adapted from [AZ99]. We will show that a graph G = (V, E') with no triangle has at
most %2 edges. Let a be the size of the largest independent set A of G, and set 5 =n — «.
For each vertex i, its neighbors form an independent set (because G is triangle-free) and so
d; < a. Notice that since A is independent, the set V' \ A of size 8 meets every edge of G,
so we can count the edges of G by their endvertices outside of A to get [E| <37, d; < af.
Applying the AM-GM inequality yields

a+6)2:n2

FE| < < —.
Blass (“50) =5

Turdn’s theorem allows us to generalize Theorem [4.1}-this theorem characterizes the graphs
with n vertices that must contain an r-clique K, (see Figure [§] right):

Theorem 4.2 (Turdn’s theorem). For r > 2, a graph G = (V, E) that has n vertices must
contain a r-clique if it satisfies
1 n?
El>(1———] —.
] (r— 1> 2

Proof. In this proof, we will show by induction that any graph with n vertices that does not
contain an r-clique has at most (1 — ﬁ) % edges.

APPLICATIONS OF ADJACENCY MATRICES 9

Note that if n < r, we have that

Do 0 WL) N e S RN K
2 2 2 272 20r—1) r—1)2

Thus for the least (nontrivial) case n = 3 it suffices to check r € {2,3}. Notice that if

r=2,(1--5) W = 0. A 2-clique K, is simply an edge, so a graph with no 2-cliques

has no edges and thus this case is proved. The case of r = 3 follows from the proof of

Thm. 411

Let G = (V, E) be a graph with n vertices and maximal edges that does not contain a
r-clique. By the maximality of its edges, G must contain a (r — 1)-clique and so we let
A C G be a (r — 1)-clique. Then we can let B be V' \ A. A contains (") edges, so we can
now bound the number of edges in B and between A and B. We know by induction that
B contains at most (1 — ﬁ) w edges. Since G has no p-clique, each vertex in B can
intersect at most r — 2 vertices in A. Thus the number of edges with one vertex in A and
another in B is at most (r — 2)(n —r + 1). Then

E| < (T;1)+(1—T11) (n_;+1)2+(r—2)(n—r+1)

(r=1)(r—2) 1 n? —2n(r —1) + (r —1)?
s (- 1 yeme

+(r—2)(n—r+1)

:(1 1 >n_2 r—=Dr—-2)+r—-12=-2Cn+)(r—1)+2n+2(r—2)(n—r+1)
2 2
1

_ (1_) 2 (r—1)(2r—3)— (r—1)2r —4) + 2n(r — 1) — 20+ 1)(r — 1)
r—1 9

N MR

Turan’s theorem is a key result of extremal graph theory, a field within graph theory
concerned with how global properties of a graph like its number of vertices or edges affect its
local structure such as forced subgraphs. Through the use of spectral graph theory, Turan’s
theorem can be extended to give the number of edges past which an arbitrary graph must
contain an r-clique (see [Chu05]).

Another extension of Turdn’s theorem gives us a bound on the number of edges a graph
may have before it must contain a friendship graph as a subgraph:

Theorem 4.3. A graph G = (V, E) must contain the friendship graph F, if it satisfies

2 —r, r odd

Bl > V{J +f(r), f() :{

r? —3r/2, r even
Furthermore, these bounds on |E| are the best possible bounds.

Proof. See |[EFGG95| for proof. |

10

ARAV BHATTACHARYA

5. RECAP

The graph theoretic methods of using adjacency matrices and creating algorithms as de-
scribed in this paper are particularly useful in spectral graph theory and computer science
problems, respectively. These methods, thanks to their usefulness in solving such vast types
of problems, are essential tools in any graph theorist’s toolkit.

[AZ99]
[Chu05]

[CLRS09]

[EFGGY5)

[Kos88]
[Mat10]

[S+69]

REFERENCES

Martin Aigner and Giinter M Ziegler. Proofs from the book. Berlin. Germany, 1999.

Fan Chung. A spectral turdn theorem. Combinatorics, Probability and Computing, 14(5-6):755—
767, 2005.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

P. Erdos, Z. Furedi, R.J. Gould, and D.S. Gunderson. Extremal graphs for intersecting
triangles. Journal of Combinatorial Theory, Series B, 64(1):89-100, 1995. URL: https://
www.sciencedirect.com/science/article/pii/S009589568571026X, doi:https://doi.org/
10.1006/jctb.1995.1026.

AV Kostochka. The nonexistence of certain generalized friendship graphs. In Combinatorics (Eger,
1987), pages 341-356. North-Holland, Amsterdam, 1988.

Jiti Matousek. Thirty-three miniatures: Mathematical and Algorithmic applications of Linear
Algebra. American Mathematical Society Providence, 2010.

Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354—
356, 1969.

Email address: bhattacharya.arav05@gmail.com

https://www.sciencedirect.com/science/article/pii/S009589568571026X
https://www.sciencedirect.com/science/article/pii/S009589568571026X
https://doi.org/https://doi.org/10.1006/jctb.1995.1026
https://doi.org/https://doi.org/10.1006/jctb.1995.1026

	1. Introduction
	2. Friendship Theorem
	3. Finding Triangle Subgraphs
	4. Extremal Graph Theory
	5. Recap
	References

