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1 Introduction

The two principles of this paper, the pigeonhole principle and double counting, are extremely
simple and obvious, yet they are crucial in a variety of non-obvious and beautiful results. In this
paper, we discuss miscellaneous uses of the principles, followed by applications to theoretical
computer science, card tricks and games, number theory, graph theory and a remarkably useful
result called Sperner’s Lemma. Each section, describing one genre of applications, is approxi-
mately independent from the other sections, so the reader could read the sections he or she finds
more interesting and skim or skip the other sections. We will assume readers are familiar with
the definition of a limit (for the Bolzano-Weierstrass Theorem), the definition of a group (for
showing elements of finite groups have finite order), the definition of modular arithmetic and
Euclids Lemma (for several number theory results), and the definition of a graph (for several
graph theory results). With that said, let us state the principles discussed by this paper.

Theorem 1.1 (Pigeonhole principle). If n items are put in m containers, with n > m, there
must be a container with more than one item.

More generally, we have the following.

Theorem 1.2 (Generalized pigeonhole principle). If km + 1 items are put in m containers,
there must be a container with at least k + 1 objects.

The infinite analogue of this principle is

Theorem 1.3 (Infinite pigeonhole principle). If infinitely many items are put in finitely many
containers, there must be a container with infinitely many objects.

This principle was first introduced by Dirichlet, and is also known as Dirichlet’s Box Prin-
ciple. It was used in the proof of Dirichlet’s Approximation Theorem, which is one of many
applications we will cover in this paper. Now for double counting, which is equally trivial:

Theorem 1.4 (Double counting). Suppose that we are given two finite sets R and C and a
subset S ⊆ R × C. Whenever (p, q) ∈ S, then we say that p and q are incident. If rp denotes
the number of elements that are incident to p ∈ R, and cq denotes the number of elements that
are incident to q ∈ C, then ∑

p∈R

rp = |S| =
∑
q∈C

.
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2 Introductory Examples

We show some elementary examples of the pigeonhole principle and double counting to show
its versatility.

Example (Putnam Exam 2002 A2). Given any five distinct points on the surface of a sphere,
show that some four of them must lie on a closed hemisphere.

Proof. Pick two of the points and consider the great circle they form on the sphere. There are
three remaining points, and the circle splits the sphere into two hemispheres, so there must be
one hemisphere that contains two points. Thus, four points lie on a closed hemisphere.

Example (Mutilated Chessboard). A chessboard with two opposite corners removed cannot be
tiled with dominoes. Below is an illustration of the situation [17].

Proof. The two removed corners were either both white or both black; without loss of generality,
assume they were black. Then there are 32 white squares and 30 black squares remaining. A
covering with 31 dominos, by the pigeonhole principle, must then have 2 white squares covered
by one domino, which is impossible.

Example. Pick any n + 1 numbers from 1 to 2n. There are two that are relatively prime, and
there are two such that one divides the other

Proof. Consider the n pigeonholes {1, 2}, {3, 4}, · · · , {2n − 1, 2n}. Any n + 1 numbers hence
must contain two numbers that are one apart from each other, and thus relatively prime.

Consider the n pigeonholes {1, 2, 4, · · · }, {3, 6, 12, · · · }, {5, 10, 20, · · · }, · · · , {2n − 1}. Any
n+ 1 numbers must then contain two numbers in the same set and consequently two numbers
that divide each other.

Example. A sequence of n integers has a consecutive sum that is a multiple of n

Proof. Consider the sums a1, a1 + a2, a1 + a2 + a3, · · ·
∑n

i=1 ai modulo n. If any equal 0, we are
done. Otherwise, we have n sums and n− 1 remainders, so two sums have the same remainder,
say

∑l
i=1 ai and

∑k
i=1 ai, where, without loss of generality, we take l > k. Then

l∑
k+1

ai ≡
l∑

i=1

ai −
k∑

i=1

ai ≡ 0 (mod n)

as desired.

Example. Elements of a finite group have finite order.
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Proof. Let G be a finite group and let g ∈ G. Consider the sequence e, g, g2, · · · . This is an
infinite sequence and there are finite elements in the group, so for some a ̸= b we have ga = gb.
Taking inverses, we have ga−b = e, and consequently have found a finite order for g.

Example (Bolzano-Weierstrass Theorem). Any bounded sequence has a convergent subsequence.

Proof. Let an be a sequence which is contained in the interval I0 = [a, b]. Pick some ai1 in I0.
We will construct In and ain iteratively. Let In−1 = [an−1, bn−1]. Then consider the intervals
[an−1,

an−1+bn−1

2
] and [an−1+bn−1

2
, bn−1]. We have finite intervals and infinite points in In−1, so

one of these must contain infinitely many points. Call this interval In = [an, bn], and take some
ain ∈ In with in > in−1.

We claim that the subsequence ain converges. For any ε > 0, pick N such that b−a
2N

< ε. For
i, j > N , we have that ai, aj ∈ In and In has length b−a

2N
, so |ai − aj| < b−a

2N
< ε. Thus ain is a

Cauchy sequence and hence convergent.

Example (Erdős-Szekeres Theorem). Every sequence a1, a2, · · · amn+1 of distinct real numbers
has an increasing subsequence of length m+ 1 or a decreasing subsequence of length n+ 1.

Proof. For each i, let ti be the length of the longest increasing subsequence which starts at ai.
If ti ≥ m+ 1 for some i, we are already done, so assume that ti ≤ m for all i. We have mn+ 1
numbers in the sequence ti, and m possible values (from 1 to m), so by the pigeonhole principle,
we must have at least n+1 values of i with the same ti. let these values of i be i1, i2, · · · , in+1.

We claim ai1 , ai2 , · · · , ain+1 is a decreasing subsequence. If, for any j, aij < aij+1
, we could

take the longest subsequence starting at aij+1
and append aij to the front, which would mean

ti1 ̸= ti2 which contradicts our assumption.
Thus we have found a decreasing subsequence of length n+ 1.

Example.
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

Proof. Consider triples of (x, y, z) where x, y, z are integers between 1 and n+ 1 and x, y < z.
We will count the number of such triples.

We first count by value of z. If z = k, there are (k− 1)2 ways of choosing x and y to be less
than it. Summing over all values of k, we get that the number of triplets is

∑n+1
k=1(k − 1)2 =∑n

k=1 k
2. We now count by directly picking values of x, y, z.

• If x = y, there are two distinct values for x, y, z and they can be chosen in
(
n+1
2

)
ways,

each of which will correspond to a triple.

• If x ̸= y, there are three distinct values for x, y, z and they can be chosen in
(
n+1
3

)
ways,

each of which will correspond to two triples, the one where x > y and where y > x.

Thus,
∑n

k=1 k
2 =

(
n+1
2

)
+ 2
(
n+1
3

)
, which can be expanded to give our desired equality.

Similar, though slightly more involved arguments can give formulas for sums of other powers.

Example. If a rectangle can be tiled by rectangles all of which have at least one side of integer
length, then the rectangle has one side of integer length.
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Proof. Without loss of generality, the rectangle has vertices (0, 0), (a, 0), (0, b), (a, b). Con-
sider the set A = {(p,R)| p is an vertex of rectangle R and p has integer coordinates}. We
will count |A| in two different ways.

We count by rectangles. Suppose a rectangle has an integer vertex. Then, depending on
whether one or both sides of the rectangle have integer length, it will have either 2 or 4 integer
vertices. Thus, counting by rectangle, we have an even number of vertex-rectangle pairs.

We now count by vertices. Every vertex that is not one of the four corner vertices is part of 2
or 4 rectangles. Thus, there must be an even number of integer vertices out of (0, 0), (a, 0), (0, b),
and (a, b). Because (0, 0) is an integer vertex, we must have at least one other integer vertex,
so a or b must be an integer, as desired.

3 Computer Science

3.1 Sorting

Theorem 3.1 (Non-Messing-Up Theorem). Let m,n and r be nonnegative integers, and let
x = (x1, . . . , xm+r) and y = (y1, . . . , yn+r) be any sequence of numbers such that yi ≤ xm+i for
each i from 1 to r. Then this condition continues to hold if x and y are sorted independently.

Proof. For purposes of visualization, let us create a 2 × (m + n + r) rectangle, place x in the
first m + r entries of the top row and place y in the last n + r entries of the bottom row, like
so:

x1 . . . xm xm+1 . . . xm+r

y1 . . . yr y1+r . . . yn+r

Now, assume for the sake of contradiction that, after sorting x and y, there exists a k such
that yk > xm+k. Define X< := {x1, x2, . . . , xm+k} and Y> := {yk, yk+1, . . . , yn+r}. If x ∈ X< and
y ∈ Y>, then x ≤ xm+k < yk ≤ y; that is, any element of X< is strictly less than any element of
Y>. Note that the union of X< and Y> has (m+ k) + (r− k+1+n) = m+n+ r+1 elements,
but there are only m+ n+ r columns in our table. Thus, by the pigeonhole principle, for any
permutation of x and y, there must exist a column that contains an element from X< and an
element from Y>, that is, there must exist a k′ such that xm+k′ < yk′ . But this contradicts the
given initial permutations of x and y, which satisfied yi ≤ xm+i for all i from 1 to r.

Corollary 3.2. If, after sorting each column of a two-dimensional array, the rows are sorted,
then the columns remain sorted.

Proof. This follows immediately by applying the previous theorem to each consecutive pair of
rows.

Definition 3.3. An array is said to be k-ordered or k-sorted if each subarray with gaps of k
between adjacent indices is sorted.

Example. Shellsort is an algorithm that sorts an array a by k-sorting a by insertion-sort for
progressively decreasing k. The following pseudocode [15] details the algorithm, given an array
to sort a and a decreasing gap sequence gaps:
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foreach (gap in gaps) {

for (offset = 0; offset < gap; offset++) {

#Insertion sort of {a[offset],a[offset+gap],a[offset+2*gap],...}

for (i = offset; i < n; i += gap) {

temp = a[i]

j = i

while (j >= gap and a[j - gap] > temp) {

a[j] = a[j - gap]

j -= gap

}

a[j] = temp

}

}

}

This algorithm relies on the following crucial corollary of Theorem 3.1.

Corollary 3.4. If a k-ordered array a is h-sorted, then it remains k-sorted.

Proof. For each offset f from 1 to h − 1, let y = (af , af+h, af+2h, . . . , af+⌊(|a|−f)/h⌋·h), x =
(af+k, af+h+k, af+2h+k, . . . , af+⌊(|a|−f−k)/h⌋·h+k), r = |x|, m = 0 and n = |y| − |x|. For each i
from 1 to r, we have yi ≤ xi = xm+i because a is k-sorted. By Theorem 3.1, when we sort x
and y as a consequence of h-sorting a, this inequality will still hold. Since this is true for each
offset from f from 1 to h− 1, this means that a remains k-ordered after being h-sorted.

3.2 Pumping Lemma

The pigeonhole princple is key in understanding what strings can be mapped to by regular
expressions, and what strings cannot. We begin with some definitions.

Definition 3.5 (Formal languages). An alphabet is a (typically finite) set of elements called
letters that is denoted as Σ. A word or string is a sequence of letters, and the set of all words
over the alphabet Σ is denoted as Σ∗. A (formal) language L on Σ is a subset of Σ∗.

Definition 3.6. If L is a language, then L∗ denotes the empty string and all finite-length
strings that can be generated by concatenating arbitrary elements of L.

Definition 3.7. If w is a word in a language L, then wn is the concatenation of w with itself
n times.

Definition 3.8. The collection of regular languages over an alphabet Σ is defined recursively
in the following manner:

• The empty language Ø is regular.

• If a is a letter in an alphabet Σ, then the singleton language {a} is regular.

• If A is a regular language, then A∗ is regular.
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• If A and B are regular languages, then A ∪ B (union) and A · B (concatenation) are
regular.

• No other languages over Σ are regular.

That is, a regular language is the set of strings that are mapped to by a regular expression.

Example. The language containing the strings consisting of a sequence of 0s followed by a
sequence of 1s and the strings consisting of a sequence of 1s followed by a sequence of 0s is
regular. It is mapped to by the regular expression 0∗1∗ + 1∗0∗, where “+” denotes the union
operator.

Example. The language with alphabet {0, 1} consisting of strings with an even number of zeros
is regular. It is mapped to by the regular expression (1 + 01∗0)∗ (among others).

Do non-regular languages exist? How could we show that a given language is non-regular?
For this, we will need consider regular languages in the context of models of computation called
finite automata.

Definition 3.9. A deterministic finite automaton (DFA)M is a five-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set of states,

2. Σ is an alphabet,

3. δ : Q× Σ → Q is a transition function,

4. q0 ∈ Q is the start state, and

5. F ⊂ Q is the set of accept states.

We say that M accepts a string w = w1w2 . . . wn if there exists a sequence r0, r1, . . . , rn in Q
with

1. r0 = q0,

2. δ(ri, wi+1) = ri+1 for i = 0, 1, . . . , n− 1, and

3. rn ∈ F .

We say that M recognizes a language A if A = {w|M accepts w}.

Example. Consider the following deterministic finite automaton.
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The states Q = q0, q1 are represented by circles, the alphabet is {0, 1}, the transition
function is represented by the arrows, q0 is the start state, and the accepts states F = {q0} are
represented by double-circles. This automaton recognizes the language of strings with an even
number of zeros.

Definition 3.10. A non-deterministic finite automaton (NFA)M is a five-tuple (Q,Σ, δ, q0, F ).
Q, Σ, q0 and F are as in the preceding definition, but the transition function δ is different. We
now allow simultaneous transitions to, and coexistence in, multiple states. For convenience,
we also allow instantaneous transitions, denoted by ε, transitions that occur immediately and
independently of the string in question. Thus, δ is a function from Q×Σε, where Σε = Σ∪ ϵ, to
the power set P(Q). Note that δ can map to the empty set, in which case the thread in question
dies. M will then accept a string w if at least one of the parallel threads from processing w
reaches an accepted state. More formally, we say that M accepts a string w = w1w2 . . . wn if
there exists a sequence r0, r1, . . . , rn in Q with

1. r0 = q0,

2. ri+1 ∈ δ(ri, wi+1), and

3. rn ∈ F .

Example. Consider the following NFA:

Once the starting thread enters the initial state q0, two threads simultaneously and immpedi-
ately travel along the two ε edges. Then the input begins to be read. This NFA recognizes the
language L = {0k| k is a multiple of 2 or 3}.
Example. Consider the following NFA:
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It recognizes the language L = {w| third entry from right holds a 1}.
Clearly, every DFA is an NFA, since NFAs are simply a generalization of DFAs. But is the

reverse true—does every NFA have an equivalent DFA representation? The answer is yes! The
idea is, given an NFA, we construct a DFA whose states represent subsets of the set of states
of the NFA.

Theorem 3.11. Every NFA can be equivalently expressed as a DFA.

Proof. Suppose we have an NFA N = (Q,Σ, δ, q0, F ) recognizing a language L. For any subset
of states Qsub ∈ Q, let E(Qsub) denote the set of all states that can be immediately reached
via 0 or more ε edges from a state in Qsub. Then we construct a DFA M = (Q′,Σ′, δ′, q′0, F

′)
recognizing L, with

1. Q′ = P(Q),

2. Σ′ = Σ,

3. For R ∈ Q′ and a ∈ Σ′, define δ′(R, a) =
⋃
r∈R

{q | q ∈ E(δ(r, a))},

4. q′0 = E({q0}),

5. F ′ = {q′ ∈ Q′ | q′ ∩ F ̸= ∅}.

Thus, a language is accepted by some DFA if and only if it is accepted by some NFA. We
now use what we’ve learned to prove a very useful property of regular languages.

Theorem 3.12 (Keene’s Theorem). A language L is regular if and only if there exists a finite
automaton that recognizes it.

Proof. First, we show that if a language is regular, then there exists a non-deterministic (and
hence also a deterministic) finite automaton that recognizes it. It suffices to verify that the set
of languages recognized by an NFA satisfies the first four bullet points of Definition 3.8.

• It is easy to find an NFA that recognizes the empty language: It consists of a single node
that is both starting and accepting, with no transitions.

• It is also easy to draw an NFA that recognizes the singleton language {a}, as shown below:

• If L is recognized by an NFA N , then an NFA recognizing L∗ is formed by drawing ε-
arrows from the accept states of N to the start state of N and by making the start state
of N an accept state.
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• Suppose L1 is recognized by an NFA N1 and L2 is recognized by N2. Then an NFA
recognizing L1 · L2 is formed by drawing ε-arrows from the accept states of N1 to the
start state of N2, and by making the accept states of N1 non-accept states. An NFA
recognizing L1 ∪ L2 is formed by drawing epsilon edges from a new start state q0 to each
of the start states of N1 and N2. See below for an illustration.

We now show that if a language is recognized by an NFA N , then it can be mapped to by a
regular expression and is thus regular. By creating a new state and mapping all accept states
to it via ε-arrows if necessary, we can assume that N has a single accept state. Now, repeatedly
remove non-accept and non-start states and replace them with regular expression transitions
that capture paths through the removed node. See an example below [8]:

Ultimately, we are left with only the start state and the accept state, as shown below [8]:

If, at this point, the regular expressions associated with each transition are as above, then
the regular expression that matches the accepted strings is (r1 + r2r

∗
4r3)

∗r2r
∗
4. Thus, we can

construct a regular expression that matches the words in any language that is recognized by an
NFA, completing the proof.

Example. Consider the DFA recognizing the language with alphabet {0, 1} recognizing all
strings with an even number of zeros, given above as the first example of a DFA. We can
remove the single non-starting and non-accepting state q1, obtaining the following diagram:
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Note that we arrive at only one node because the start state is itself the accept state. This
diagram in turn is equivalent to the regular expression (1 + 01∗0)∗.

Finally, we come to the Pumping Lemma, the main result of this section. It will allow us
to prove that certain languages are not regular, that is, that they cannot be parsed by regular
expressions.

Theorem 3.13 (Pumping Lemma for regular languages). For any regular language L, there
exists a constant p such that any string w in L with length at least p can be expressed as a
sequence of substrings w = xyz, with y nonempty and |xy| ≤ p, such that xynz is in L for all
nonnegative integers n.

Proof. By Keene’s Theorem, L is recognized by some DFA D. If L is finite, simply let p be one
greater than the maximum word length, and the theorem is vacuously true. Otherwise, let p
equal the number of states in D. Now, consider an arbitrary string w = w1w2 . . . wn of length
n ≥ p. Each character wi is read at some non-start state qi, and there are only p − 1 states
other than the start state. Therefore, by the pigeonhole principle, there is a first state qi that
repeats in the processing thread: it reads a character wi and later some character wi+j. We let
x = w1w2 . . . wi−1, y = wiwi+1 . . . wi+j and z = wi+j+1wi+j+2 . . . wn.

Clearly, y is nonempty because wi and wi+j are distinct. Furthermore, we have |xy| ≤ p because
every state in the processing thread is distinct until wi+j, the end of y, is read. Lastly, since
reading y yields a loop starting and ending at qi, repeating it any number of times, or omitting
it, will not affect the final state reached, so the new string will also be accepted.

Example. We show that the language L = {0k1k | k ∈ N} is not regular. Suppose the contrary.
Then, by the Pumping Lemma, for each sufficiently long string, we must be able to repeat
some middle section y of the string and obtain another member of the language. But clearly
this is impossible: If y contains some zeros followed by some ones, then after y is repeated,
the ones will alternate with the zeros more than once, producing a string that is not in the
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language; and otherwise, if y consists of all zeros or all ones, the number of 0s will no longer
match the number of 1s, and thus the resulting string again cannot be in the language. Thus,
we have reached a contradiction, implying that the strings in L cannot be parsed by a regular
expression.

4 Card Tricks and Games

Example. Deal five hands of five cards in the standard way: Deal the first card of each hand,
then the second card of each hand, etc. Sort each hand in increasing order from back to front,
and assemble the hands in any way you like. Deal five hands a second time, and once again
order each hand. Then, assemble the hands by placing the fifth hand on top of the four hand,
those two hands on top of the third, etc. Deal five hands a third time. This time, each hand
will be ordered!

This card trick works thanks to the Non-Messing-Up Theorem of the previous section. We
can consider the 25 cards to be part of a 5-by-5 array. The first time we deal out the cards,
each hand is a row in this array. We subsequently order each row. The second time we deal out
the cards, each hand is a column in this array. We subsequently order each column. The third
time we deal out the cards, each hand is once again a row. By the Non-Messing-Up Theorem,
these rows remain ordered, so the each hand is already sorted.

Example. Two magicians named Moe and Maggie perform the following card trick with a
standard deck. Moe draws five cards at random. He then chooses four of the five cards and
places them in a pile in some order. Maggie, after taking the pile and observing the cards,
declares the card that Moe left out. How does this work?

By the Pigeonhole Principle, at least two of the five cards in Moe’s hand have to be of the
same suit. Thus, by leaving out one of these two cards and placing the other card at the top of
the pile given to Maggie, Moe can indicate the suit of the left-out card. Because there are only
thirteen ranks, given the rank of one card, it must be possible to obtain the rank of the second
card by adding at most six, wrapping around from K to A if necessary. Thus, Moe orders
the remaining three cards in one of six ways to indicate the rank of the left-out card. The
assignment of a value from one to six to each permutation can be determined via lexicographic
ordering.

Example. Projective Set, also abbreviated as Pro Set, is a game implementing a deck of 63 cards,
where each card may or may not contain a dot of each of six colors. Each card is distinct, and
no card is blank, which is why there are 26 − 1 = 63 cards in the deck. Seven of the cards
are dealt onto the table. The objective of the game is to find a subset of cards such that each
colored dot appears an even number of times in the subset. The image below shows an example
of a deal and a corresponding subset.
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But how do we know a winning subset always exists? For this, we use the pigeonhole principle.
Define the sum of a subset of cards S to be the card c such that if c were appended to S, the
result would be a winning subset. Now, there exist 27 subsets of the seven cards (including the
empty set) but only 26 possible sums. Therefore, there must exist two (possibly not disjoint)
subsets S1 and S2 that have the same sum. But that means that (S1/S2)∪(S2/S1) is a nonempty
subset that has sum equal to the empty card, that is, it is a winning subset.

5 Number Theory

5.1 Modular Arithmetic

Theorem 5.1 (Chinese Remainder Theorem). Let m,n be relatively prime and let 0 ≤ a < m
and 0 ≤ b < n. Then there exists an x < mn with x ≡ a (mod m) and x ≡ b (mod n).

Proof. Consider the sequence a, a+m, a+2m, · · · , a+ (n− 1)m. These terms have remainder
a (mod m) and are less than mn. We will show that one of these terms is b (mod n), and will
thus have found a value of x satisfying the desired conditions.

Consider their remainders modulo n. Suppose for sake of contradiction, none of the terms
have remainder b. There are n terms in the sequence and n− 1 remainders (excluding b), so by
the pigeonhole principle, for some i, j we must have a + im ≡ a + jm (mod n). Thus, by the
definition of modular equivalence, (a + im) − (a + jm) = (i − j)m is divisible by n. Euclid’s
Lemma then implies n|(i − j), which is a contradiction, as |i − j| < n. Thus there must be
some x with remainder a (mod m) and b (mod n) which is less than mn, as desired.

Theorem 5.2 (Fermat’s Little Theorem). If p is a prime and a is a positive integer, ap ≡ a
(mod p).

Proof. Consider the strings of length p with a letters. We count all such strings in two ways.
First, there are clearly ap strings. Second, we say that two strings are the same “necklace” if
they are cyclic shifts (that is, rotations) of each other. We claim that each necklace corresponds
to either 1 or p strings.

Figure 1: The geometric intuition is that we consider two strings to be the same necklace if,
when we connect the ends, one can be rotated to obtain the other. This shows p = 3 and a = 2.
[5]

12



Consider an arbitrary string and its p cyclic shifts. Suppose two of these strings are the
same. Then there is a cyclic shift of m which preserves the string. Because p is prime, there
exists some m−1 such that mm−1 ≡ 1 (mod p). If we perform this shift of m a total of m−1

times, this preserves the string, so a shift of 1 will preserve the string. Thus, the necklace must
have all identical shifts and correspond to 1 string. Otherwise, all the rotations are distinct, so
that the necklace corresponds to p strings. This conclusion can be reached more easily if one
assumes group theory: The orbit of a string under the group action of cyclic shifts must divide
the size of the group, p, and thus must equal either 1 or p.

If a necklace corresponds to 1 string, all its rotations are identical, so it must be monochro-
matic. There are thus a such necklaces. We then have a+p(number of not monochromatic necklaces)
total strings. Thus ap = a+ p(number of not monochromatic necklaces), so ap ≡ a (mod p) as
desired.

Theorem 5.3 (Wilson’s Theorem). If p is prime, (p− 1)! ≡ −1 (mod p).

Proof. Consider the cyclic permutations of p points, which we will double-count. There are
(p− 1)! such permutations.

As before, we can consider the cyclic shifts of these permutations, and by a similar argument,
get that either all p shifts are distinct, or the permutation is fixed under the shifts. There are
p− 1 cyclic permutations which are fixed (namely the permutations which shift the points by
a constant). Thus (p− 1)! = (p− 1)+ p · (number of non fixed permutations), so (p− 1)! ≡ −1
(mod p) as desired.

Theorem 5.4 (Sum of Two Squares Theorem). If a prime p is of the form 4k + 1, then there
exist integers x and y such that p = x2 + y2.

Lemma 5.5. If p is of the form 4k + 1, then there exists a such that a2 ≡ −1 (mod p).

Proof. We claim that a = (2k)! works. We have

a2 ≡ (1 · 2 · · · 2k)(2k · · · 2 · 1)
≡ (1 · 2 · · · 2k)(−2k · · · − 2 · −1)(−1)2k

≡ (1 · 2 · · · 2k)((2k + 1) · · · (4k − 1) · 4k)
≡ (4k)!.

By Wilson’s Theorem, this is congruent to −1 as desired.

Proof. Let a be as defined above, such that a2 ≡ −1 (mod p).
Consider the integers ax− y where 0 ≤ x, y <

√
p. There are (⌈√p⌉)2 > (

√
p)2 = p pairs of

(x, y), and p remainders modulo p, so, by the pigeonhole principle, for some pairs (x1, y1) and
(x2, y2), we have

ax1 − y1 ≡ ax2 − y2 (mod p).

Regrouping terms, we have a(x1 − x2) ≡ (y1 − y2) (mod p), which after squaring gives
−(x1 − x2)

2 ≡ (y1 − y2)
2 (mod p). We thus have

(x1 − x2)
2 + (y1 − y2)

2 ≡ 0 (mod p).
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By construction, (x1, y1) ̸= (x2, y2), so (x1 − x2)
2 + (y1 − y2)

2 > 0. Furthermore, 0 <
x1, x2, y1, y2 <

√
p, so (x1 − x2)

2 + (y1 − y2)
2 <

√
p2 +

√
p2 = 2p. Thus, we must have

that (x1 − x2)
2 + (y1 − y2)

2 = p, as desired.

We finish the modular arithmetic section with an elegant theorem: the theorem of Quadratic
Reciprocity, a theorem that brought together the minds of Euler, Legendre, and Gauss, three
of the greatest mathematicians of all time. To approach this problem, we must first clarify a
few definitions.

Definition 5.6. Take any odd prime p. Then, for any a ̸≡ 0 (mod p), we say a is a quadratic
residue modulo p if there exists some b ̸≡ 0 (mod p) for which a ≡ b2 (mod p). If a is not a
quadratic residue, we call it a quadratic nonresidue.

Notice that for any two m,n such that m2 ≡ n2 (mod p), we have (m + n)(m − n) ≡ 0
(mod p). Therefore, we must have either p|(m + n) or p|(m − n), that is, either m ≡ n or

m ≡ −n. Thus, we have exactly p−1
2

quadratic residues, namely 12, 22, . . . ,
(
p−1
2

)2
.

We now introduce some handy notation:

Definition 5.7 (The Legendre Symbol). For any a ̸≡ 0 (mod p), the Legendre symbol
(
a
p

)
is

defined to equal 1 if a is a quadratic residue and −1 if a is a quadratic nonresidue.

We begin with Fermat’s Little Theorem, which states that if a ̸≡ 0 (mod p), then

ap−1 ≡ 1 (mod p),

that is, ap−1−1 ≡ 0. This signifies that all nonzero residues modulo p are roots of the polynomial
xp−1 − 1 ∈ Zp[x].

Now, notice that we can factor it into (x
p−1
2 − 1)(x

p−1
2 + 1). Thus, all nonzero residues are

roots of either x
p−1
2 − 1 or x

p−1
2 + 1. For any quadratic residue a, there is some b ̸≡ 0 (mod p)

such that a ≡ b2 (mod p), so that a
p−1
2 ≡ bp−1 ≡ 1 (mod p). Thus, all of the p−1

2
quadratic

residues must be roots of the first factor, whereas all quadratic nonresidues are roots of the
second factor. Notice that this matches precisely the definition of the Legendre symbol. In
fact, we have the following, which is also known as Euler’s Criterion:(a

p

)
≡ a

p−1
2 (mod p).

Euler’s Criterion directly leads to the multiplicative property:( i
p

)(j
p

)
=
(ij
p

)
.

This is very helpful, since now we don’t need to calculate the Legendre symbol for every single
integer; all we have to do is calculate it for ±1, 2, and for odd primes q ̸= p.

Euler and Legendre both were able to prove the theorem of Quadratic Reciprocity for specific
cases, but it was Gauss in 1796 who finally provided a general proof. We now reach the one of
the pinnacles of modular arithmetic:

Theorem 5.8 (Quadratic Reciprocity). (p
q
)( q

p
) = (−1)

p−1
2

q−1
2
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Proof. The proof we will present here was created by Ferdinand Eisenstein, which makes use
of Gauss’s Lemma:

Lemma 5.9 (Gauss). Let a ̸≡ 0 (mod p). Consider all of the numbers in the form 1a, 2a, . . . , p−1
2
a,

and reduce them to some number between −p−1
2

and p−1
2
, i.e. ia ≡ ri (mod p) where −p−1

2
≤

ri ≤ p−1
2
. Then, (a

p

)
= (−1)s,

where we define s = |{i : ri < 0}|.

To prove this, let u1, u2, . . . , us be the negative residues, and v1, v2, . . . , v p−1
2

−s be the positive

residues. Notice that no uj and vk can exist such that −uj ≡ vk (mod p). Consider for the sake
of contradiction that such a uj and vk existed. Then, there must be some integersm,n such that
uj ≡ ma (mod p) and vk ≡ na (mod p). This implies that uj + vk ≡ ma+ na ≡ (m+ n)a ≡ 0
(mod p). Therefore, since p ∤ a, we must have p | (m+n). However, we must have m+n ≤ p−1
after taking m,n modulo p, leading to a contradiction.

Thus, {−u1, . . . ,−us, v1, . . . , v p−1
2

−s} = {1, 2, . . . , p−1
2
}, so

∏
j

(−uj)
∏
k

vk =

(
p− 1

2

)
!.

Now, remembering that all uj and vk are residues of multiples of a, we can equate(
p− 1

2

)
! ≡ (−1)s

∏
j

uj

∏
k

vk ≡ (−1)s
(
p− 1

2

)
! · a

p−1
2 (mod p).

Thus, since
(
p−1
2

)
! is relatively prime to p, we can cancel it out to get

(−1)sa
p−1
2 ≡ 1 (mod p),

which rearranging leads to

(−1)s ≡ a
p−1
2 (mod p).

We can replace the equivalence with an equality since both sides of the congruence can only
take on values of ±1.

We now introduce the elegant yet simple logic presented by Eisenstein. Let p, q be odd

primes, and consider
(

q
p

)
. Then, there exists some integer i such that qi gives a negative residue

in Gauss’s Lemma. This implies that there is a unique integer j for which −p
2
< iq − jp < 0.

Also note that because 0 < i < p
2
, 0 < j < q

2
. This means that

(
q
p

)
= (−1)s where s is equal to

the number of lattice points (x, y) that satisfy

0 < x <
p

2
, 0 < y <

q

2
, 0 < py − qx <

p

2
. (1)

In a similar manner,
(

p
q

)
= (−1)t where t is equal to the number of lattice points satisfying

0 < x <
p

2
, 0 < y <

q

2
, 0 < qx− py <

q

2
. (2)
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Consider the rectangle formed by these lattice points; it has side lengths p
2
and q

2
. Draw

the two lines parallel to the diagonal (py = qx) described by the equations py − qx = p
2
and

qx− py = q
2
.

Figure 2: The lattice rectangle for p = 17 and q = 11.

To complete the proof, we only require a few more observations. The first observation is
that there are no lattice points residing on the diagonal and two lines parallel to it. This is
because if py = qx, since p ∤ q, we must have p | x, which is not possible by the restraints in
Gauss’s Lemma. For the other two parallel lines, py − qx is an integer, unlike p

2
and q

2
, and we

cannot have an integer equal to a noninteger.
The second observation is that all lattice points satisfying the inequalities prescribed in 1

lie in the strip 0 < py − qx < p
2
, whereas the lattice points satisfying the inequalities described

in 2 lie in the strip 0 < qx− py < q
2
. Therefore, the total number of lattice points in these two

sections, which together make up the middle strip, is s+ t.
The final observation is that the outer regions R, S of points satisfying py − qx > p

2
or

qx−py > q
2
, respectively, contain the same number of points. We can show this by constructing

a bijection to take the points (x, y) in R to the point
(
p+1
2

− x, q+1
2

− y
)
in S. It is not difficult

to check that this indeed is a bijection.
Therefore, the parity of the total number of lattice points in the entire rectangle, p−1

2
q−1
2
, is

the same as the parity of s+ t. Thus, we have(q
p

)(p
q

)
= (−1)s+t = (−1)

p−1
2

q−1
2 .

5.2 The Pell Equation

Theorem 5.10 (Dirichlet’s Approximation Theorem). For any real α and positive integer N ,
there exists integers p, q with 1 ≤ q ≤ N such that |qα− p| < 1

N
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Proof. Consider theN+1 numbers 0, α, 2α, · · · , nα and theN intervals [0, 1
N
), [ 1

N
, 2
N
), · · · [N−1

N
, 1).

By the pigeonhole principle, the fractional parts of two numbers must be in the same interval.
Say those numbers are iα and jα with i > j. We claim p = ⌊iα⌋ − ⌊jα⌋ and q = i − j is a
solution.

We can verify

|qα− p| = |(i− j)α− (⌊iα⌋ − ⌊jα⌋)| = |(iα− ⌊iα⌋)− (jα− ⌊jα⌋)| = |{iα} − {jα}| < 1

N

as {iα} and {jα} are both in an interval of length 1
N

(with strict inequality as the interval is
half open).

Corollary 5.11. For any real α, there exist infinitely many fractions p
q
such that |α− p

q
| < 1

q2
.

Proof. Dirichlet’s Approximation Theorem implies that for any positive integer N , there exist
p, q ≤ N such that |α − p

q
| < 1

Nq
< 1

q2
. Because for any fixed q, there exists an N such that

|α − p
q
| ≥ 1

Nq
, a finite number of p, q cannot satisfy the equality for infinitely many N . This

proves the corollary.

Theorem 5.12 (Nontrivial solution of the Pell Equation). For nonsquare integer d, x2−dy2 = 1
has an integer solution (x, y) ̸= (±1, 0).

Lemma 5.13. If |x− y
√
d| < 1

y
with x, y ∈ Z+, then

|x2 − dy2| < 1 + 2
√
d.

Proof. We can first bound x by

x ≤ |x− y
√
d|+ y

√
d < 1 + y

√
d.

Thus,

|x− dy2| = (x+ y
√
d)|x− y

√
d| < (1 + 2y

√
d)

1

y
< 1 + 2

√
d.

Proof. By our corollary, there are infinitely many pairs (x, y) satisfying |x − y
√
d| < 1

y
. Note

that y is positive by definition, and x > y
√
d − 1

y
>

√
d − 1

√
2 − 1 > 0 is positive. By our

lemma, there are finitely many values for x2 − dy2 for these pairs (x, y) (as it must lie between
−1 − 2

√
d and 1 + 2

√
d which are constants independent of x and y). Thus, the pigeonhole

principle states there must be some M which equals x2 − dy2 for infinitely many pairs (x, y).
Note that M is nonzero by the irrationality of

√
d.

Consider these values of (x, y) modulo M . As there are finite pairs (x, y) modulo M and
infinitely many (x, y) satisfying x2 − dy2 = M , by the pigeonhole principle, we must have some
pair (x1, y1) and (x2, y2) that are equivalent modulo M . Say x1 − x2 = Mk and y1 − y2 = Ml.

We then have
x1 + y1

√
d = x2 + y2

√
d+M(k + l

√
d).

Substituting M = (x2 + y2
√
d)(x2 − y2

√
d) and factoring our (x2 + y2

√
d) gives

x1 + y1
√
d = (x2 + y2

√
d)(1 + (x2 − y2

√
d)(k + l

√
d)).
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Note that (1 + (x2 − y2
√
d)(k + l

√
d) can be expanded to something of the form x + y

√
d

for some integers x, y, so we can write x1 + y1
√
d = (x2 + y2

√
d)(x+ y

√
d). Taking conjugates,

we also have that x1 − y1
√
d = (x2 − y2

√
d)(x − y

√
d). Multiplying these equations, we get

x2
1 − dy21 = (x2

2 − dy22)(x
2 − dy2), or M = M(x2 − dy2), and hence we have found values for x, y

such that x2 − dy2 = 1.
It can be easily checked that (x, y) ̸= (±1, 0), as if (x, y) = (±1, 0), we would have x1 +

y1
√
d = (x2 + y2

√
d)(±1+ 0

√
d). Equating coefficients would give either give (x1, y1) = (x2, y2)

(contradicting our construction of (x1, y1) and (x2, y2) as distinct) or x1 = −x2 (contradicting
how x1 and x2 as positive). Thus, we have found a nontrivial solution to the Pell equation.

6 Graph Theory

The pigeonhole principle and double counting can also be used in numerous graph theory
applications. We first prove some relatively simple yet enormously consequential results:

Proposition 6.1. Any graph G has two vertices with the same degree.

Proof. Let VG be the set of all vertices in graph G, and let ∆G denote the maximum degree of
any vertex in VG. Thus, we must have ∆G ≤ |VG| − 1, so for all v ∈ VG, deg(v) could take on
any value ranging from 0 to |VG| − 1. However, notice that we cannot have two vertices within
the same graph such that one has degree |VG| − 1 and the other has degree 0, since the first
vertex would be connected to every other vertex. Therefore, deg(v) can either take on values
from 0, . . . , |VG| − 2 or 1, . . . , |VG| − 1. However, in both cases, the total possible number of
values of deg(v) is only |VG| − 1, whereas we have |VG| vertices. Therefore, by the Pigeonhole
Principle, we must have at least two vertices with the same degree.

Proposition 6.2.
∑

v∈VG
deg(v) = 2|EG|, where EG is the set of all edges in G.

Proof. The proof of this relies on double counting. Notice that the left-hand side counts all
edges coming out of all vertices. However, this counts each edge exactly twice. To see why,
consider an edge α connected to vertices v and w. On the left-hand side, α is counted twice —
once for v and once for w. Thus, each edge is counted twice, leading to the desired equality.

We now tackle a relatively difficult graph theory problem to prove:

Theorem 6.3. If G is a graph on n vertices with no 4-cycles,

|E| ≤
⌊n
4
(1 +

√
4n− 3)

⌋
Proof. We begin by defining the set S to include all pairs (u, {v, w}) such that u, v, w ∈ VG, u
is connected to both v and w, and v ̸= w. Summing over all u, we get

|S| =
∑
u∈VG

(
deg(u)

2

)
.

In other words, we are considering all occurrences of the following configuration:
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Furthermore, every possible pair of vertices {v, w} can share at most one such u, otherwise
the 4-cycle condition would be violated. Thus,

|S| ≤
(
n

2

)
,

where n = |VG|. Putting those together, we have∑
u∈VG

(
deg(u)

2

)
≤
(
n

2

)
.

For convenience, from now on, we will shorthand deg(u) to d(u). Expanding and rearranging
yields ∑

u∈VG

d(u)2 ≤ n(n− 1) +
∑
u∈VG

d(u).

To continue, we apply a common technique used in extremal graph theory problems, namely
the Cauchy-Schwarz inequality. Specifically, we apply it to the vectors (d(u1), . . . , d(un)) and
(1, . . . , 1), giving us (∑

u∈VG

d(u)

)2

≤ n
∑
u∈VG

d(u)2.

Combining this with the inequality earlier, we have(∑
u∈VG

d(u)

)2

≤ n2(n− 1) + n
∑
u∈VG

d(u).

Now, by Proposition 6.2, we have

4|EG|2 ≤ n2(n− 1) + 2n|EG|.

Rearranging gives
4|EG|2 − 2n|EG| − n2(n− 1) ≤ 0.

Upon solving, the desired inequality is produced.

We would like to now present an elegant double-counting proof to an intriguing theorem by
James J. Sylvester, but revised in more graph theory-like terms by Arthur Cayley.

Theorem 6.4 (Cayley’s Tree Theorem). There are nn−2 labelled trees on n vertices.

Proof. The following argument was contrived by Jim Pitman, and can even be used to generalize
Cayley’s Theorem.

We must introduce the notion of a rooted forest :
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Definition 6.5. A rooted forest on {1, 2, . . . , n} is a group of trees where each tree also has a
signified root. We let Fn,k denote the set of all rooted forests with k roots.

For example, Fn,1 consists of all rooted trees. Now, we consider every tree Fn,k ∈ Fn,k as a
directed graph with edges directed away from the roots.

Definition 6.6. A forest F contains another forest G if F contains each rooted tree in G as a
directed graph. Thus, if F contains G, then F has fewer or the same number of components as
G does.

Figure 3: F2 contains F3, and as a result, F2 has fewer components than F3.

The key idea of Pitman’s argument is the idea of a refining sequence, which is a sequence of
forests F1, F2, . . . , Fk that satisfy Fi ∈ Fn,i (i.e. the i

th forest in the sequence has i components),
and for each i, Fi+1 is obtained from Fi by deleting an edge.

Now, for a given forest Fk ∈ Fn,k, let N(Fk) denote the number of rooted trees with n
vertices containing Fk, and let N∗(Fk) denote the number of refining sequences that end in
Fk. We will count N∗(Fk) in two different ways. The first way is by constructing the sequence
starting with some tree. Let F1 ∈ Fn,1 such that F1 contains Fk. There are N(Fk) such starting
forests F1. Then, we obtain Fk from F1 by deleting the edges of F1 not found in Fk in any order
to create a refining sequence. Since there are k − 1 edges to remove, we have

N∗(Fk) = N(Fk) · (k − 1)! .

Now, we construct our sequence backwards. To create any Fk−1 out of an Fk, we must draw
a directed edge from any vertex to a root of another component tree. (An example of such a
connection is shown in Figure 4.)
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Figure 4: To get from F3 to F2, we can pick any vertex and draw a directed edge from that
vertex to any root from another component tree. For example, we cannot connect 3 to 8.

Since there are n total vertices, and for each vertex, there are k − 1 possible other roots
to connect to, we could add a new directed edge in n(k − 1) ways. Then, to get from Fk−1 to
Fk−2, we would have to add another directed connection from any of the n vertices to another
root. Thus, we have k − 2 remaining choices for the next root to connect to, k − 3 choices for
the next, etc. Eventually, we find that for any Fk ∈ Fn,k,

N∗(Fk) = nk−1(k − 1)! .

Equating these two expressions for N∗(Fk) and cancelling out (k − 1)!, we end up with

N(Fk) = nk−1.

Notice that if we let k = n, then our graph consists of n disconnected roots. Then, con-
structing all possible refining sequences backwards from this ending point, we end up producing
all rooted trees, so |Fn,1| = nn−1. Since we had n original vertices in the graph to choose as
our root in the first place, we can divide both sides by n to see that

Tn = nn−2,

where Tn equals the number of labeled trees with n vertices. This completes the proof.

6.1 Ramsey Theory

Ramsey Theory is generally regarded as the study of order and patterns in substructures within
larger structures. One prime example of this is its application to graph theory. Consider the
following question:

Question 6.7. How many people would we need at a birthday party to guarantee that there is
a group of 3 people all of whom either know each other or do not know each other?

It turns out the answer to this question is 6. We can use Ramsey Theory to answer this
question, if we rephrase in the terms of the following proposition:

Proposition 6.8. If we color the edges of the K6 graph red and blue, there must be a monochro-
matic triangle.
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Letting the 6 people be the vertices of our graph, we can color the edge between two vertices
blue if the people at those vertices if they know each other and red if they do not know each
other.

The generalized version of this problem is stated as Ramsey’s Theorem, the centerpiece of
Ramsey Theory, which is as follows:

Theorem 6.9 (Ramsey’s Theorem). Given two positive integers m and n such that m,n ≥ 2,
there is a minimum positive integer, denoted by R(m,n), such that in any red-blue coloring of
KR(m,n), one can find at least one blue clique on m vertices or a red clique on n vertices.

Thus, for the birthday party question above, we have R(3, 3) = 6. It is possible to extend
this theorem to an infinitely large graph.

Theorem 6.10 (Infinite Ramsey Theorem). Consider an infinitely large completely connected
graph G that is colored by a finite number of colors. Then there exists an infinitely large clique
C ⊆ G such that all of the edges connecting the vertices of C have the same color.

Proof. Let V0 be the set of vertices in G. Consider one of these vertices v0 ∈ V0. By the
pigeonhole principle, since we have an infinite number of edges coming from v0 but only a finite
number of colors, at least one of these colors must be coloring an infinite number of the edges
coming from v0. Let one of those such colors be denoted c0. Now, let V1 denote the vertices of
G such that for all v′ ∈ V1, we have C(v0, v

′) = c0. Note that V1 ⊂ V0.
We can do the same process again on V1, since it is also an infinite set of vertices: consider

one vertex v1 ∈ V1, then by the pigeonhole principle, there must be at least one color, say color
c1, such that there are an infinite number of vertices v′′ connected to v1 such that C(v1, v

′′) = c1.
Let the set of vertices connected to v1 by an edge of color c1 be denoted as V2. We can repeatedly
apply this construction to generate the sets V0, V1, V2, V3, . . ., where we are considering one
vertex vi ∈ Vi and then generating the infinite set Vi+1 from all of the vertices connected to vi
by an edge of color ci.

Now, we make some observations: for all i ≥ 0,

1. vi ∈ Vi,

2. Vi+1 ⊂ Vi, and

3. C(vi, v) = ci for all v ∈ Vi+1.

Now, we prove the following lemma:

Lemma 6.11. For any integers i, j such that 0 ≤ i < j, it is true that

C(vi, vj) = ci.

Proof. By property 1, we have vj ∈ Vj. Then, by property 2, we have Vj ⊂ Vj−1 ⊆ · · · ⊆ Vi+1,
so vj ∈ Vi+1. Finally, by property 3, we have C(vi, vj) = ci.

Revisiting the pigeonhole principle, since we have finitely many colors but infinitely many
edges, at least one color, let’s say c, occurs infinitely many times in G. Let our clique C have the
set of vertices V where V = {vi : i ≥ 0 and ci = c}. Then we claim C is the clique we are looking
for: C is infinite, and for any two vertices vi, vj ∈ V , by Lemma 4.1 we have C(vi, vj) = ci = c.
Thus, G has an infinite monochromatic clique C.
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Ramsey Theory can also be applied to more general topics than just graphs. One common
area to find patterns in substructures is sequences; thus, the theorem presented below concerns
colorings of sequences:

Theorem 6.12 (Van der Waerden’s Theorem). For any two given positive integers s and p,
there is a minimum number n such that for any coloring of {1, 2, 3, . . . , n} with p colors, there
is an arithmetic sequence of s numbers where all of those numbers have the same color.

Proof. For our purposes, we will let this smallest possible number n be denoted as W (s, p).
Now, we define some key terms:

Definition 6.13. Suppose we have some disjoint arithmetic progressions A1, A2, ..., Al. Then,
we say the Ai are color focused at x if x is the l + 1th term for all of these sequences.

Definition 6.14. Further, suppose each sequence Ai is monochromatic and has a unique color.
Then, we say these sequences are color-focused at x.

For this proof, we will be doing double induction, with the outer induction on s and the
inner induction on p.

For the base case, it is fairly easy to show that W (2, p) = p + 1, since once we have p + 1
numbers, by the pigeonhole principle, since there are only p colors, some two of these numbers
must have the same color, creating a 2-term arithmetic progression.

Now, for the inductive step, we will assume that W (s, p) is finite for all p, and show that if
W (s − 1, p) is finite, then so is W (s, p) for a fixed p. Specifically, we will show that for every
q ≤ p, there exists a number, which we will denote by V (s, p, q), such that among any p-coloring
of [V (s, p, q)], there exists one of a

• Monochromatic arithmetic progression of length k, or

• A set of q (s− 1)-termed color-focused monochromatic arithmetic progressions, which we
will denote A1, A2, . . . , Aq, along with their common focus.

We begin with the base case, q = 1. In this event, we can simply take

V (s, p, 1) = 2W (s− 1, p),

as we are guaranteed that the sth term of any (s − 1)-term arithmetic progression lies within
the next W (s− 1, p) integers.

For the inductive step, we assume that V (s, p, q − 1) is finite. Then, we claim that

V (s, p, q) ≤ 2V (s, p, q − 1)W (s− 1, pV (s,p,q−1)).

To prove this, say we have a positive integer n = 2V (s, p, q − 1)W (s − 1, pV (s,p,q−1)), and we
are provided a p-coloring of [n]. Now, we divide this coloring up into 2W blocks of size V ,
where W = W (s − 1, pV (s,p,q−1)) and V = V (s, p, q − 1). For the outer induction on s, notice
that since there are pV ways to color each block, by the construction, there exists a sequence
of s− 1 identically colored blocks Bl, Bl+m, . . . , Bl+(s−2)m among the first W blocks, whose sth
term lies among one of the blocks.

Now, consider any specific block Bl+jm for some 0 ≤ j ≤ s−2. For the inner induction on q
(and hence on p), within this block, by the inductive hypothesis, we know that there exist q−1
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color-focused monochromatic arithmetic progressions of length s − 1, along with their focus.
For a given color c, where 1 ≤ c ≤ q − 1, the arithmetic progression is

Ac = {ac + jmV , ac + dc + jmV , . . . , ac + (s− 2)dc + jmV},
and it is focused at f + jmV . Now, we have two possibilities: if f + jmV is also colored with
color c, then we have a monochromatic arithmetic progression of length s, and we are done.
Otherwise, say the focus (f + jmV) is colored with color c′ (which is also the qth color). Then,
if we let the monochromatic arithmetic progression be

Ai = {ai, ai + (di + jmV), ai + w(di + jmV), . . . , ai + (s− 2)(di + jmV)}
for all 1 ≤ i ≤ q − 1, and

Aq = {f, f +mV , f + 2mV , . . . , f + (s− 2)V}
then A1, A2, . . . , Aq form a set of q (s − 1)-term color-focused monochromatic arithmetic pro-
gressions all focused at f +(s−1)mV (which is indeed less than or equal to n). Thus, our inner
induction on q is complete, and thus the induction on p.

To complete the proof and finish the outer induction on s, we can use a similar argument
presented at the start of the proof, it follows that W (s, p) ≤ V (s, p, p), and thus W (s, p) is
finite.

Notice that the color-focusing arguments presented here rely on the Pigeonhole Principle,
so that we have “enough” integers to get the desired number of monochromatic arithmetic
progressions.

7 Sperner’s Lemma

Theorem 7.1 (Sperner’s Lemma). Suppose that a triangle with vertices at V1, V2 and V3 is
triangulated. Assume that the each vertex in the triangulation is assigned a color from the set
{1, 2, 3}, such that each vertex Vi is colored i, and each vertex along the side connecting Vi

and Vj is colored only either i or j, while each interior vertex is assigned any color arbitrarily.
Then in the triangulation, there must exist a small “tricolored” triangle, which contains all
three different vertex colors.

See below an illustration of the setup with the tricolored triangles shaded in grey [11].
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Proof. We will prove a stronger statement: There exists an odd number of tricolored triangles.
Consider the dual graph with a vertex in each face (including the outside face) and with an
edge between two dual vertices if the edge in the original graph that it crosses connects two
vertices colored 1 and 2, as illustrated below [11].

Every interior dual vertex has degree at most 2, and an interior dual vertex has degree 1 if and
only if it corresponds to a tricolored triangle. Therefore, equivalently, we have that an interior
dual vertex has odd degree if and only if it corresponds to a tricolored triangle. Because the
sum of the degrees of each vertex is twice the number of edges, as shown with a double-counting
argument in the previous section, the dual graph must have an even number of vertices with
odd degree. Now, the outside vertex must have odd degree, since the colors along the bottom
side of the big triangle must alternate between 1 and 2 an odd number of times. Thus, there is
an odd number of interior dual vertices with odd degree, which implies the desired result.

Remark 7.2. One can easily generalize Sperner’s Lemma to an arbitrary dimension via induc-
tion. In n dimensions, we have a triangulated n-dimensional simplex with vertices V1, V2, . . . , Vn+1,
and we color each vertex with one of the colors from {1, 2, . . . , n+1}, with the restriction that
Vi is colored i and each (n− 1)-dimensional side of the simplex that excludes Vi cannot contain
the color i. Then we wish to prove that there exists an odd number of fully colored small
simplices whose vertices are colored with every color from {1, 2, . . . , n+ 1}.

The argument is similar to the case of n = 2. First, we assume that Sperner’s Lemma is true
in n− 1 dimensions. Then, given a triangulated simplex in n dimensions, we create a new dual
graph with a vertex in every small simplex as well as in the space outside the large simplex,
with an edge between two dual vertices if the small (n − 1)-simplex that it crosses connects
vertices colored 1, 2, . . . , n. Consider a small simplex with n of its vertices colored 1, 2, . . . , n.
If the last vertex is colored n + 1, then the small simplex is fully colored, and the degree of
the corresponding dual vertex is 1. Otherwise, if the last vertex is (without loss of generality)
colored 1, then there are two (n− 1)-simplices with vertices colored 1, 2, . . . , n—one excluding
the last vertex and one including the last vertex;—thus, the corresponding dual vertex has
degree 2. All of this is to show that a dual vertex has odd degree if and only if it is located in
a fully colored small simplex.

Now, by the inductive hypothesis, the dual vertex outside the large simplex has odd degree.
But since every graph must have an even number of vertices with odd degree, this means that
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there must be an odd number of interior dual vertices with odd degree. By the above reasoning,
this implies that there exists an odd number of fully colored small simplices.

This will give us a new proof of the rectangle tiling problem.

Theorem 7.3. If a rectangle can be tiled by rectangles all of which have at least one side of
integer length, then the rectangle has one side of integer length.

Proof. We will assume, as before, that the rectangle has vertices (0, 0), (a, 0), (0, b), (a, b). Sup-
pose for sake of contradiction that a and b are not integers.

We will think of our tiling as a graph, with the vertices and edges of the rectangles being
the vertices and edges of the graph, respectively. Add in edges to connect a diagonal of each
rectangle to make it a complete triangulation. We will color the vertices as follows. If the
x-coordinate of the vertex is an integer, color it red. Otherwise, if the y-coordinate is an
integer, color it blue. Otherwise, color it green. We will use Sperner’s lemma by thinking of the
rectangle as a triangle with vertices (a, 0), (b, 0), (a, b), with the edge from (a, 0) to (b, 0) being
made up of the edge from (a, 0) to (0, 0) with the edge from (0, 0) to (0, b).

Note that, by definition, (0, b) is red, (a, 0) is blue, and (a, b) is green. Furthermore, note that
any vertex on the edges (a, 0), (0, 0) or (0, 0) (0, b) cannot be green as they have a coordinate 0.
Also, any vertex on the edge (a, 0), (a, b) cannot be red as they have non-integer x-coordinate
a, and similarly any vertex on (0, b), (a, b) cannot be blue.

Thus, by Sperner’s Lemma, we have that there exists a triangle with all three colors. Such
a triangle must fall on a rectangle, which by hypothesis must have at least one integer side, so
we have either a red point or a blue point that differs from a green point by an integer amount
in the x or y coordinate. This is a contradiction, as any point which differs from a green point
by an integer amount in the x or y coordinate must be green. Therefore, a or b must be an
integer.

Theorem 7.4 (Envy-free cake division). Given a cake and n people, there exists a division
of the cake into n pieces and a bijection assigning each piece to a person such that no person
prefers a piece other than his own, assuming that

1. Each person prefers a piece of nonzero size to an empty piece, and

2. Preference sets are closed. That is, any piece that is preferred in a converging sequence
of cake divisions is also preferred in the limiting cake division.

Proof. For simplicity of visualization, let us for the moment consider the case of n = 3. Then
we can imagine cutting the cake with two parallel vertical slices, resulting in three pieces of
length (along some arbitrary axis) x, y and z, with x+ y + z = 1, where 1 is the length of the
cake, without loss of generality. The graph of x+ y + z = 1 is a triangle, which we triangulate
in a regular grid pattern and assign “ownership” to each vertex such that every triangle has
vertices owned by the three distinct people, as illustrated below [6].
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Next, we ask the owner of each vertex which piece he would prefer if the cake were split according
to the coordinates of that vertex, and we color it with the response (1, 2 or 3). Because every
person prefers a piece of nonzero size to an empty piece, no vertex on side AB will be colored 1,
no vertex on CA will be colored 2, and no vertex on BC will be colored 3. Thus, the coloring of
the triangulated triangle satisfies the conditions of Sperner’s Lemma, so that there must exist
a tricolored small triangle. Such a tricolored triangle will always exist for an arbitrarily dense
grid pattern in a sequence G = G1, G2, G3, . . . . Because the triangle is a compact set and the
size of each small triangle approaches zero, there must exist a subsequence of G such that the
vertices of the tricolored small triangle converge to a point. Since preference sets are closed,
if we cut the cake according to the coordinates of this limit point, each person will prefer a
different piece.

With the n-dimensional case of Sperner’s Lemma, this argument immediately generalizes
to any number of people.

We can use Sperner’s Lemma to prove the Brouwer fixed point theorem.

7.1 Brouwer fixed point theorem

Theorem 7.5 (Brouwer fixed point theorem). Let S ⊂ Rn be convex and compact, and let
T : S → S be a continuous transformation. Then T has a fixed point.

Proof. Let ∆ be the simplex in Rn+1 with vertices e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en+1 =
(0, 0, . . . , 1). Because ∆ is homeomorphic to S, it suffices to show that any continuous trans-
formation T : ∆ → ∆ has a fixed point.

Triangulate ∆ with an arbitrarily fine mesh as in the cake-splitting scenario of the previous
section. Assign to each vertex v the color min{i : T (v)i < vi}, which, in other words, is the
smallest index i such that the ith coordinate of T (v)− v is negative. If such an i does not exist,
then we are done: Because the coordinates of v sum to 1, T (v) ̸= v necessarily implies that at
least one coordinate of T (v) − v is negative, and at least one is positive. We check that this
coloring satisfies the conditions of Sperner’s Lemma. First, the vertex ei must receive color i,
since the only possible negative component of T (ei)− ei is the ith component. Furthermore, if
v lies on the (n − 1)-simplex opposite to ei, then vi = 0, so that T (v)i − vi ≥ 0, and thus v
cannot receive color i.
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By Sperner’s Lemma, for any arbitrarily fine mesh in a sequence G = G1, G2, G3, . . . , there
exists a small simplex whose vertices contain all n + 1 colors. Because the large simplex is a
compact set and the size of each small simplex approaches zero, there exists a subsequence of
G such that the vertices of this small simplex converge to a single point. At that limit point
v, because T is continuous, the ith component of T (v) − v is negative for every i. This is a
contradiction because the components of any point in the simplex must sum to 1. Therefore,
there exists a fixed point of T .

7.1.1 Nash Equilibrium

Definition 7.6. A finite n-player strategic game has a set of players, {1, 2, 3, · · · , n}, with each
player i having a finite set Si of pure strategies and a utility function ui which gives the payoff
for an n-tuple of pure strategies.

Definition 7.7. A mixed strategy for player i is some probability distribution si over Si. The
probability of picking strategy j ∈ Si is si,j. The set of all mixed strategies for player i is ∆i. A
strategy profile is an n-tuple of (mixed) strategies, one for each player. The set of all profiles is
denoted ∆. We use the notation (q, s−i) to represent the strategy profile we get by taking the
profile s and changing player i’s strategy from si to q, and we’ll write u(q, s−i) as shorthand for
u((q, s−i)).

Definition 7.8. We can extend the definition of a utility function to mixed-strategy profiles
to be the expected utility under the probability distribution for the strategy profile, or

ui(s) = Ea∼s(ui(a)).

Definition 7.9. A Nash Equilibrium is a strategy profile s∗ = (s∗1, s
∗
2, · · · , s∗i , · · · , s∗n) such that

for every player i,
ui(s

∗) ≥ ui(s
′
i, s

∗
−i)

for any s′i ∈ ∆i. In other words, the Nash equilibrium is a strategy profile where no player can
alter their strategy to improve their utility.

Theorem 7.10 (Nash Equilibrium). Every n-player strategic game has a Nash equilibrium.

Proof. For a mixed strategy profile σ ∈ ∆, and a pure strategy j for player i, we define
Gaini(s, j) = max{0, ui(j, s−i) − ui(s)}, or the increase in payoff for player i obtained by
switching to a pure strategy (or zero if there is no increase in payoff), given a profile.

We define f : ∆ → ∆ to send the mixed strategy profile s = (s1, s2, · · · , sn) to the mixed
strategy profile with

fi,j(s) =
si,j +Gaini(s, j)

1 +
∑|Si|

k=1Gaini(s, k)
,

where the denominator is a normalizing factor so that each fi(s) is a mixed strategy, and hence
f(s) is a mixed strategy profile. Each fi is continuous, so f is continuous. Each ∆i can be
thought of as the (|Si| − 1)-dimensional simplex {(x1, x2, · · · , x|Si|)|

∑
xi = 1,∀i : xi ≥ 0} by

taking the vector with components corresponding to the probabilities of each pure strategy, and
hence is a compact and convex subset of R|Si|. As the Cartesian product of finitely many ∆i,
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∆ is also a compact convex subset of some Rn. Thus, by Brouwer’s fixed point theorem, f has
a fixed point s∗, which we claim is a Nash Equilibrium.

Suppose for sake of contradiction that for some i,
∑|Si|

k=1Gaini(s
∗, k) > 0. By definition of a

fixed point, we have that for all j, s∗i,j =
s∗i,j+Gaini(s

∗,j)

1+
∑|Si|

k=1 Gaini(s∗,k)
. Solving for s∗i,j yields

s∗i,j =
Gaini(s

∗, j)∑|Si|
k=1Gaini(s∗, k)

. (3)

As a second intermediate result, we claim that for all j ∈ Si, we have

s∗i,j
(
ui(j, s

∗
−i)− ui(s

∗)
)
= s∗i,jGaini(s

∗, j). (4)

If Gaini(s
∗, j) > 0, this is true by definition. If Gaini(s

∗, j) = 0, then s∗i,j = 0 by (1), making
the equality trivially true as both sides equal 0.

Thus, we have

0 = ui(s
∗
i , s

∗
−i)− ui(s)

=

(∑
j∈Si

s∗i,jui(j, s
∗
−i)

)
− ui(s

∗) by definition of ui for mixed strategies

=
∑
j∈Si

s∗i,j(ui(j, s
∗
−i)− ui(s

∗)) because
∑
j∈Si

s∗i,j = 1

=
∑
j∈Si

s∗i,jGaini(s
∗, j) by equation (2)

=

 |Si|∑
k=1

Gaini(s
∗, k)

∑
j∈Si

(s∗i,j)
2 by equation (1)

> 0 because s∗i is nonzero,

which is a contradiction. Therefore,
∑|Si|

k=1Gaini(s
∗, k) = 0 for all i. In other words, Gaini(s, k) =

0 for all players i and k ∈ Si, or, by definition of utility, ui(s
∗) ≥ ui(k, s

∗
−i) for any k ∈ Si. By

the linearity of ui, we then have ui(s
∗) ≥ ui(s

′
i, s

∗
−i) for any s′i ∈ ∆i, which is the very definition

of a Nash Equilibrium.
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