SUM OF TWO SQUARES

ALEX THOLEN

The final goal is to prove that there exists a,b € N such that a? 4+ b? = ¢ is equivalent to
saying that the exponent for every p =3 mod 4 in the prime factorization of ¢ is even.

Lemma 1. For primes p =1 mod 4 the equation n?> = —1 mod p has exactly two solutions

ne€{l,2,...,p— 1}, for p =2 there is exactly one solution, and for p =3 mod 4 there are
no solutions.

Proof. For p = 1 we take a primitive root r. From Fermat’s Little Theorem, we know that
rP~1 =1, and as such PP = 1. Now, as p = 1 + 4 - ¢ we can rewrite this as r?* = —1. As
such r¢ r3¢ are roots of —1. And these are the only ones - as (r*)? = 2a = 2¢ mod 4c
and there are only those two solutions.

For p = 2 we simply have to consider 1.

For p = 3 take a primitive root r of modulo p. As such, each number can be written as

r™. From Fermat’s Little Theorem, we know that »»~! = 1, and as such P o= 1. Now,
as p =3 +4-c, we can rewrite this to r'72¢ = —1. Now, consider a®> = —1. Then, we would
have (r*)?= -1 mod p = r** = -1 mod p — 2x =1+ 2c¢ mod p — 1. However, as p — 1

is even we can reduce this to mod 2 and as such for any number to square to —1 we would

need 0 = 1, which is a contradiction.
[ |

Lemma 2. No number that is 3 mod 4 is the sum of two squares.

Proof. Look at the equation a? + b? = ¢ in mod 4. If we look at what a?could possibly be,
we see that {0?,12,2% 3%} reduces down to {0,1}. As such, {0,1} +{0,1} = {0,1,2} and
could never be 3 mod 4. [ |

Note that this is also true for primes, which is primarily what this will be used for.
Lemma 3. If a,b are sums of two squares then a - b is a sum of two squares.

Proof. We have m? + n? = a,2? + y*> = b. Then,

a-b=(m*+n?)(z* + %
= m222 + m2y2 + n2q2 +n2y2
=m2z® + n2y2 + mnxry — mnry + m2y2 + n?2?

= (mx +ny)* + (my — nr)?

Theorem 4. Fvery prime p =1 mod 4 is the sum of two squares.
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Proof. Let’s look at things of the form x+sy for z,y € {0,1,..., [ \/p]} and s is some constant.
The amount of distinct pairs of z,y is #{0,1,...,|\/p)}* = {1+ |\VpJ}* > V0° = »p
and as such there are more pairs than possible outcomes modulo p. As such, there exists
oy, 2"y €{0,1,...,[/p]} such that 2’ + sy’ = 2" 4 sy” for any s. Moving things over
to one side, we see that there exists for any s some distinct pairs (z/,y'), (2”,y") such that
(' —2")+s(y —y") =0. Now let x =2’ —2” and y = ¢/ — ¢". If we look at the range, we
see that x,y € {—[\/p],..., [\/p]} for the equation x + sy = 0.

Now, set s to be one of the two square roots of —1 that we proved exist in [I, Move sy
over to the right side and square it to get that 22 = —¢2, or 22 + y*> = 0. Now note that
2% y? < pas |z,y| < [/p] < /P Assuch, 2* +y? < 2p, and it can’t be equal to 0 as that
would mean that 2’ = 2",y = 3" despite them being distinct. And since p|z? + y?, we get
that p = 22 + % and we have our proof. [ |

Theorem 5. If 2> +y?> =0 mod p for some p =3 mod 4, then p|z,y.

Proof. We have 22 +y?> = 0, and so 22 = —y%. Since this is mod p, everything has a
multiplicative inverse except for 0. So if x,y # 0 then we can multiply both sides by the
multiplicative inverse of y* to get (z -3')> = —1. However |1| showed that there is no square
root of —1. And as such, we couldn’t multiply by the multiplicative inverse of y? and as
such y = 0 and as such x = 0, proving our theorem. [ |

Theorem 6. A natural number n can be represented as a sum of two squares if and only
if every prime factor of the form p =3 mod 4 appears with an even exponent in the prime
decomposition of n.

Proof. Let’s begin with the only if. From [5] we see that for a sum of squares to be equal
to n any prime of the residue 3 mod 4 must divide both x and y and henceforth have p?|n.
Dividing the whole thing by p? can then further prove that if p*|n then p*|n, and so on.
Then for the if. Take n = p{*p52p5° ... Any prime that isn’t 3 mod 4 can be written as a
sum of squares (4 or 2 = 1? +1?) and from |3| we see that also means that p{’ is also a sum of
squares. Since every prime factor of the form 3 mod 4 has an even eonent, we know that
3

a;\ 2
they are also a sum of squares, namely <pi2 ) +0%. Then again from |3|we can just multiply

all these prime factors together and we can see that n is the sum of two squares. [ |

And so we’ve shown which numbers have sum of square representations. But this doesn’t
help with trying to find any. For that, we need to take a different approach.

To do this, let’s begin with defining [q1, ¢2,q3, ..., ¢, for ¢; € Z,. We define it by the
following properties:

(1) =1
(2) ] =&
(3) [CJ1> q2,4s3, - - - >qn] = q1[q27 qs, ... >qn] + [q37 q4y- - >qn]
Note that these three uniquely determine how this function is defined. Then from

here let’s prove 5 more properties; namely
) [Qh-”a(bz] €Z+
) [Q27~'7Qn] < [QIa'-'7Qn]
) [QI7"'aQTL] = [QTLa"‘vql]
) [q2, -, qn) and [q1, ..., q,] are relatively prime
) lar s Gom15 sy Gorts -5 G0l = [Q1s 5 Q)@ - @] Flan, - @s1)[Gsr2s - Gl
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Now, to prove 4 we simply note that every operation is either multiplication or addition - as
such it can’t leave Z, .
For number 5 we see that from number 3 we get that

[Q17Q2,Q37---,Qn] :q1[q2aq3a--'aQn]+[q37q47-"aQTL] Z 1'[‘]27(]3’"'7QR]+1 > [q27Q3a"'>qn]'

For number 6 we can prove it by induction - obviously the base case of 1 or 0 elements
work fine, and otherwise we can turn [qi,...,q,] into ¢i[gn, ..., 9] + [gn, .- .,q3] and into
QqnlG2; - @1 + @1lG2, s Gn—2] + Guldss - - - gn-1] + (g3, - - -, gu—2] Via two uses of property
3 and the inductive hypothesis, and on the flip side we can do the same thing - turn-
ing [gn, - -, qu] nto gulqr, .- - guoa] + (a1, -, Gu2] Int0 Guan[go, - -, Gn1] + @nlgs, - Gua] +

ql[q27 s aQTL—Q} + [q37 s aQTL—Q]'
For number 7 we can prove it by induction - assume that for all [¢y, ..., g,] then [q1, ..., ¢,]

and [qa, ..., q,) are relatively prime. Then take an arbitrary [qi,. .., ¢.,+1] - we wish to find
the ged of that and [ge, ..., ¢u41]. Use property 3 to turn it into ged(qi[ge, g3, - -, @ni1] +
(43, Q4 - - -y Gns1]s [@2, - - - Gnea] Which from the euclidean algorithm we can reduce down to
ged([gs, G4y - - -y Gnr1)s (G2 - - - s Gnea])- This is assumed by the inductive hypothesis! The base
case is simply noting that for 0 elements the ged of 1 and 1 is ... well ... 1.

Finally for number 8 we can prove it by induction over s - when s = 1 we have property
3, and as such we have our base case. Otherwise,

[qh cee 7(]5][(]5—1-1’ s 7qn] + [Chv cee 7q8—1][QS+27 cee 7Qn]
can be turned into

[q1s s @) (@s1l@s2s - @] + [srsy s an]) + s Gs—][gss2s - - G
which when expanded and rearranged becomes

(@s1lar, - v as) +la o as—aDlgsr2 - @l + 0, a6)[Gsss, - 0]
which we can apply property 3 in reverse to obtain

[a1, - @sn]l@sv2, - @l + - @l [Gsss - - Gl

which is precisely the following case.

So now we have the 8 properties (3 defined and 5 proven) that will be needed for the rest
of the proof.

Let’s use the Euclidean Algorithm to generate the continued fraction of % - namely

r t S U ) 0
—=q+-(0<t<s),-=@+-0<u<t),...,— =qn+ —
S S t t w w

As such we can pair each Z up with a sequence of numbers {qi, ¢, ...,¢,}. Each such
sequence also has exactly one % that produces this sequence - in fact, I claim it is

EZ[QDQQW"’qn]
S [qQaq37"'7qn]
From the first property of [q1,. .., ¢,] we see that

{[Q177Qn]} o {q1[q27"'7Qn] + [q377Qn]} o { [q277Q7’L]}
= = QT

[(:ZQ7"'7qTL] [q27"'7qn] [q37"'7Qn]

and as such continues to simplify until we indeed get the desired sequence. The uniqueness

is clear - once can simply follow the Euclidean Algorithm backwards to obtain £ given the
{q17 cee aQ’n}
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Now let’s get back to our comfy primes that are of the form p = 4r + 1. Take some

arbitrary integer u € {2,3,...,2r}. Consider what we get when we do {2}. From the

[91,92;--5qn]
[92,93,--,4n]
the right side are relatively prime (property 7 from earlier) we can furthermore conclude

that p = [q1,¢2,---,¢:) and u = [¢g2,q3,...,q,]. Now note that ¢; must be at least 2 (as
2> 4T+1 > 2 and ¢, is in fact the integer part of £) and that g, must also be at least 2 (from
the fact that in the final step of the Euclidean algorlthm were ¢, = 1 then we would have £
and that would have been simplified earlier). As such, performing the following sequence of
actions can create a mapping between elements u and v:

above equation we know that £ = and as the numerator and denominator of

p_loe.wl
u (42,03, - - -, Qn]
p=la, g0 =
=, -.,q1] =
p_ [ —

v -1, q1]

We know that v € {2,3,...,2r} as

P _ — _ Wltn-1, - 1] + [@n-2, ..., ¢1] > g > 2

v (gn1se ] 901, 1]

and v # 1 because that would mean [g,_1,...,q] = 1 and yet [g,—1,...,q1] > ¢ > 2 and
so the only possible case in which we would have v = 1 is if p = [¢1] but that means that
w is also 1 and as such is not relevant. So this is a bijective mapping from {2,3,...,2r} to
{2,3,...,2r}. Now note that there are an odd amount of elements - as such there must be
some element which maps to itself (say A). Now, from the euclidian algorithm there is just
one {qi,...,q,} for § and as such {gy,...,q} must be exactly the same as {q1,...,¢.} -
or in other words it is palindromic. Say we have n = 2k + 1. That means that it becomes

(@1 -y Gk Qrt1s Qks - - -, q1). From property 8 of the bracket function we can turn this into

b= [CI1,~-->QI~:+1][‘Jk7-'~aCI1] + [Q1>---an][Qk—1,---7Q1]

We can factor out [qy,...,q] though and since p is a prime that means we must either
have [q1,...,qx] = 1 or [q1,...,qx] = p. It certainly isn’t equal to p as it’s a subset of
@1y Gk, Qrt1s Qks - - - q1) Which p is equal to, and as such we would need [qy,...,q] = 1.
However ¢; > 2 and [q1,...,qx] > ¢1 and so that also isn’t possible. Henceforth we can’t

have n = 2k + 1 as that contradicts p being prime. So instead we have n = 2k, and when
using property 8 again this time we get
b= [QIa <o )Qk][q]cv v 7QI] + [Qh v 7Qk—1][q1€—17 <o aql]

And from property 6 we can reverse two of those brackets to conclude that we have p =

[Q17 s an]Q + [qlv cee 7ka—1]2-
And so all that remains for a constructive proof is to figure out what A would give this

palindromic situation. For that let’s use the following identity:

[q1,G2, -, qull@2s - =1 — (@1, - s @ui] @2y - -, 0] = (=1)"
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The base case with [g1, go] is simply [q1, ¢2][] — [¢1][q2] = (q1g2 + 1)(1) = (q1)(g2) = 1 = (—1)*.
As for the inductive step,

[q17QZ7"'aQTLHq%"'aCITL—l] - [q1a'-'7qn—1][q27'-'>Qn] -

(nlar, G2y s Guaa] + @1, - an—2))lG2s -, Gnea] — @15 - -y G—1l(@nl@e, - - - @uea] + @25 - -+ Gn—2]) =

@1y s Gn-2all@e, -, @n-1] — a1, -, @u-1][q2, - - - , @n—2] = —inductive hypothesis = (—1)"

As such we have this identity. How is it useful, one may ask? Well, let’s go back to the A
that we know must exist. Applying this property to [q1,q2, .-, Gk, Gk, - - -, 1] gets us

L=1q, s Qs Q- 1) @20 - s Qs Gy - - Q2] — (@1, - o s Qs Qs - - - B2 (@2, - - Qs Qs - - - 1

Note that [q1, ...,k Gk, ---,q1] is just p and the second half is simply A and A in reverse
order, or A\2. As such we get that

1:p[q27-~~7Qk7Qk7-~~7q2]_)\2 - _15)\2 rnodp

As such, if we take the only satisfactory square root of negative 1 (since p is 1 mod 4 we
showed that two exist - namely negatives of each other and as such exactly one of them is
between 2 and ;%1) we can then apply the above construction to obtain our sum of squares.

Let’s finish it off with an example. Take 1009, a random prime thats 1 mod 4. Now, use
some other technique (the python code I stole used Tanelli-Shanks but there are others) to
calculate a square root of —1 - in this case 469. Now time to obtain the {q¢i,...}. Applying
the algorithm above we get [2,6,1,1,1,1,6]. Assuch our two squares are [2,6, 1, 1] and [2, 6, 1]
which evaluate to 28 and 15 respectively. As such we have that 1009 = 28%+152 = 784+ 225.
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