
SUM OF TWO SQUARES

ALEX THOLEN

The final goal is to prove that there exists a, b ∈ N such that a2 + b2 = c is equivalent to
saying that the exponent for every p ≡ 3 mod 4 in the prime factorization of c is even.

Lemma 1. For primes p ≡ 1 mod 4 the equation n2 ≡ −1 mod p has exactly two solutions
n ∈ {1, 2, . . . , p− 1}, for p = 2 there is exactly one solution, and for p ≡ 3 mod 4 there are
no solutions.

Proof. For p ≡ 1 we take a primitive root r. From Fermat’s Little Theorem, we know that

rp−1 ≡ 1, and as such r
p−1
2 ≡ −1. Now, as p = 1 + 4 · c we can rewrite this as r2c ≡ −1. As

such rc, r3c are roots of −1. And these are the only ones - as (ra)2 =⇒ 2a ≡ 2c mod 4c
and there are only those two solutions.

For p = 2 we simply have to consider 1.
For p ≡ 3 take a primitive root r of modulo p. As such, each number can be written as

rn. From Fermat’s Little Theorem, we know that rp−1 ≡ 1, and as such r
p−1
2 ≡ −1. Now,

as p = 3+ 4 · c, we can rewrite this to r1+2c ≡ −1. Now, consider a2 ≡ −1. Then, we would
have (rx)2 ≡ −1 mod p → r2x ≡ −1 mod p → 2x ≡ 1 + 2c mod p− 1. However, as p− 1
is even we can reduce this to mod 2 and as such for any number to square to −1 we would
need 0 ≡ 1, which is a contradiction.

■

Lemma 2. No number that is 3 mod 4 is the sum of two squares.

Proof. Look at the equation a2 + b2 = c in mod 4. If we look at what a2could possibly be,
we see that {02, 12, 22, 32} reduces down to {0, 1}. As such, {0, 1} + {0, 1} = {0, 1, 2} and
could never be 3 mod 4. ■

Note that this is also true for primes, which is primarily what this will be used for.

Lemma 3. If a, b are sums of two squares then a · b is a sum of two squares.

Proof. We have m2 + n2 = a, x2 + y2 = b. Then,

a · b = (m2 + n2)(x2 + y2)

= m2x2 +m2y2 + n2x2 + n2y2

= m2x2 + n2y2 +mnxy −mnxy +m2y2 + n2x2

= (mx+ ny)2 + (my − nx)2

■

Theorem 4. Every prime p ≡ 1 mod 4 is the sum of two squares.
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Proof. Let’s look at things of the form x+sy for x, y ∈ {0, 1, ..., ⌊√p⌋} and s is some constant.

The amount of distinct pairs of x, y is #{0, 1, . . . , ⌊√p⌋}2 = {1 + ⌊√p⌋}2 >
√
p2 = p

and as such there are more pairs than possible outcomes modulo p. As such, there exists
x′, y′, x′′, y′′ ∈ {0, 1, . . . , ⌊√p⌋} such that x′ + sy′ ≡ x′′ + sy′′ for any s. Moving things over
to one side, we see that there exists for any s some distinct pairs (x′, y′), (x′′, y′′) such that
(x′ − x′′) + s(y′ − y′′) ≡ 0. Now let x = x′ − x′′ and y = y′ − y′′. If we look at the range, we
see that x, y ∈ {−⌊√p⌋, . . . , ⌊√p⌋} for the equation x+ sy ≡ 0.
Now, set s to be one of the two square roots of −1 that we proved exist in 1. Move sy

over to the right side and square it to get that x2 ≡ −y2, or x2 + y2 ≡ 0. Now note that
x2, y2 < p as |x, y| ≤ ⌊√p⌋ < √

p. As such, x2 + y2 < 2p, and it can’t be equal to 0 as that
would mean that x′ = x′′, y′ = y′′ despite them being distinct. And since p|x2 + y2, we get
that p = x2 + y2 and we have our proof. ■

Theorem 5. If x2 + y2 ≡ 0 mod p for some p ≡ 3 mod 4, then p|x, y.

Proof. We have x2 + y2 ≡ 0, and so x2 ≡ −y2. Since this is mod p, everything has a
multiplicative inverse except for 0. So if x, y ̸= 0 then we can multiply both sides by the
multiplicative inverse of y2 to get (x · y′)2 ≡ −1. However 1 showed that there is no square
root of −1. And as such, we couldn’t multiply by the multiplicative inverse of y2 and as
such y ≡ 0 and as such x ≡ 0, proving our theorem. ■

Theorem 6. A natural number n can be represented as a sum of two squares if and only
if every prime factor of the form p ≡ 3 mod 4 appears with an even exponent in the prime
decomposition of n.

Proof. Let’s begin with the only if. From 5, we see that for a sum of squares to be equal
to n any prime of the residue 3 mod 4 must divide both x and y and henceforth have p2|n.
Dividing the whole thing by p2 can then further prove that if p3|n then p4|n, and so on.

Then for the if. Take n = pa11 pa22 pa33 . . . Any prime that isn’t 3 mod 4 can be written as a
sum of squares (4 or 2 = 12+12) and from 3 we see that also means that paii is also a sum of
squares. Since every prime factor of the form 3 mod 4 has an even exponent, we know that

they are also a sum of squares, namely
(
p

ai
2
i

)2

+02. Then again from 3 we can just multiply

all these prime factors together and we can see that n is the sum of two squares. ■

And so we’ve shown which numbers have sum of square representations. But this doesn’t
help with trying to find any. For that, we need to take a different approach.

To do this, let’s begin with defining [q1, q2, q3, . . . , qn] for qi ∈ Z+. We define it by the
following properties:

(1) [] = 1
(2) [q1] = q1
(3) [q1, q2, q3, . . . , qn] = q1[q2, q3, . . . , qn] + [q3, q4, . . . , qn]

Note that these three uniquely determine how this function is defined. Then from
here let’s prove 5 more properties; namely

(4) [q1, . . . , qn] ∈ Z+

(5) [q2, . . . , qn] < [q1, . . . , qn]
(6) [q1, . . . , qn] = [qn, . . . , q1]
(7) [q2, . . . , qn] and [q1, . . . , qn] are relatively prime
(8) [q1, q2, . . . , qs−1, qs, qs+1, . . . , qn] = [q1, . . . , qs][qs+1, . . . , qn] + [q1, . . . , qs−1][qs+2, . . . , qn]
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Now, to prove 4 we simply note that every operation is either multiplication or addition - as
such it can’t leave Z+.

For number 5 we see that from number 3 we get that

[q1, q2, q3, . . . , qn] = q1[q2, q3, . . . , qn] + [q3, q4, . . . , qn] ≥ 1 · [q2, q3, . . . , qn] + 1 > [q2, q3, . . . , qn].

For number 6 we can prove it by induction - obviously the base case of 1 or 0 elements
work fine, and otherwise we can turn [q1, . . . , qn] into q1[qn, . . . , q2] + [qn, . . . , q3] and into
q1qn[q2, . . . , qn−1] + q1[q2, . . . , qn−2] + qn[q3, . . . , qn−1] + [q3, . . . , qn−2] via two uses of property
3 and the inductive hypothesis, and on the flip side we can do the same thing - turn-
ing [qn, . . . , q1] into qn[q1, . . . , qn−1] + [q1, . . . , qn−2] into qnq1[q2, . . . , qn−1] + qn[q3, . . . , qn−1] +
q1[q2, . . . , qn−2] + [q3, . . . , qn−2].

For number 7 we can prove it by induction - assume that for all [q1, . . . , qn] then [q1, . . . , qn]
and [q2, . . . , qn] are relatively prime. Then take an arbitrary [q1, . . . , qn+1] - we wish to find
the gcd of that and [q2, . . . , qn+1]. Use property 3 to turn it into gcd(q1[q2, q3, . . . , qn+1] +
[q3, q4, . . . , qn+1], [q2, . . . , qn+1] which from the euclidean algorithm we can reduce down to
gcd([q3, q4, . . . , qn+1], [q2, . . . , qn+1]). This is assumed by the inductive hypothesis! The base
case is simply noting that for 0 elements the gcd of 1 and 1 is ... well ... 1.

Finally for number 8 we can prove it by induction over s - when s = 1 we have property
3, and as such we have our base case. Otherwise,

[q1, . . . , qs][qs+1, . . . , qn] + [q1, . . . , qs−1][qs+2, . . . , qn]

can be turned into

[q1, . . . , qs](qs+1[qs+2, . . . , qn] + [qs+3, . . . , qn]) + [q1, . . . , qs−1][qs+2, . . . , qn]

which when expanded and rearranged becomes

(qs+1[q1, . . . , qs] + [q1, . . . , qs−1])[qs+2, . . . , qn] + [q1, . . . , qs][qs+3, . . . , qn]

which we can apply property 3 in reverse to obtain

[q1, . . . , qs+1][qs+2, . . . , qn] + [q1, . . . , qs][qs+3, . . . , qn]

which is precisely the following case.
So now we have the 8 properties (3 defined and 5 proven) that will be needed for the rest

of the proof.
Let’s use the Euclidean Algorithm to generate the continued fraction of r

s
- namely

r

s
= q1 +

t

s
(0 ≤ t < s),

s

t
= q2 +

u

t
(0 ≤ u < t), . . . ,

v

w
= qn +

0

w

As such we can pair each r
s
up with a sequence of numbers {q1, q2, . . . , qn}. Each such

sequence also has exactly one r
s
that produces this sequence - in fact, I claim it is

r

s
=

[q1, q2, . . . , qn]

[q2, q3, . . . , qn]
.

From the first property of [q1, . . . , qn] we see that{
[q1, . . . , qn]

[q2, . . . , qn]

}
=

{
q1[q2, . . . , qn] + [q3, . . . , qn]

[q2, . . . , qn]

}
=

{
q1,

[q2, . . . , qn]

[q3, . . . , qn]

}
and as such continues to simplify until we indeed get the desired sequence. The uniqueness

is clear - once can simply follow the Euclidean Algorithm backwards to obtain r
s
given the

{q1, . . . , qn}.
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Now let’s get back to our comfy primes that are of the form p = 4r + 1. Take some
arbitrary integer u ∈ {2, 3, . . . , 2r}. Consider what we get when we do { p

u
}. From the

above equation we know that p
u

= [q1,q2,...,qn]
[q2,q3,...,qn]

and as the numerator and denominator of

the right side are relatively prime (property 7 from earlier) we can furthermore conclude
that p = [q1, q2, . . . , qn] and u = [q2, q3, . . . , qn]. Now note that q1 must be at least 2 (as
p
u
≥ 4r+1

2r
> 2 and q1 is in fact the integer part of p

u
) and that qn must also be at least 2 (from

the fact that in the final step of the Euclidean algorithm were qn = 1 then we would have w
w

and that would have been simplified earlier). As such, performing the following sequence of
actions can create a mapping between elements u and v:

p

u
=

[q1, q2, . . . , qn]

[q2, q3, . . . , qn]
=⇒

p = [q1, q2, . . . , qn] =⇒
p = [qn, . . . , q1] =⇒
p

v
=

[qn, . . . , q1]

[qn−1, . . . , q1]

We know that v ∈ {2, 3, . . . , 2r} as

p

v
=

[qn, . . . , q1]

[qn−1, . . . , q1]
=

qn[qn−1, . . . , q1] + [qn−2, . . . , q1]

[qn−1, . . . , q1]
> qn ≥ 2

and v ̸= 1 because that would mean [qn−1, . . . , q1] = 1 and yet [qn−1, . . . , q1] ≥ q1 ≥ 2 and
so the only possible case in which we would have v = 1 is if p = [q1] but that means that
u is also 1 and as such is not relevant. So this is a bijective mapping from {2, 3, . . . , 2r} to
{2, 3, . . . , 2r}. Now note that there are an odd amount of elements - as such there must be
some element which maps to itself (say λ). Now, from the euclidian algorithm there is just
one {q1, . . . , qn} for p

λ
and as such {qn, . . . , q1} must be exactly the same as {q1, . . . , qn} -

or in other words it is palindromic. Say we have n = 2k + 1. That means that it becomes
[q1, . . . , qk, qk+1, qk, . . . , q1]. From property 8 of the bracket function we can turn this into

p = [q1, . . . , qk+1][qk, . . . , q1] + [q1, . . . , qk][qk−1, . . . , q1]

We can factor out [q1, . . . , qk] though and since p is a prime that means we must either
have [q1, . . . , qk] = 1 or [q1, . . . , qk] = p. It certainly isn’t equal to p as it’s a subset of
[q1, . . . , qk, qk+1, qk, . . . , q1] which p is equal to, and as such we would need [q1, . . . , qk] = 1.
However q1 ≥ 2 and [q1, . . . , qk] ≥ q1 and so that also isn’t possible. Henceforth we can’t
have n = 2k + 1 as that contradicts p being prime. So instead we have n = 2k, and when
using property 8 again this time we get

p = [q1, . . . , qk][qk, . . . , q1] + [q1, . . . , qk−1][qk−1, . . . , q1]

And from property 6 we can reverse two of those brackets to conclude that we have p =
[q1, . . . , qk]

2 + [q1, . . . , qk−1]
2.

And so all that remains for a constructive proof is to figure out what λ would give this
palindromic situation. For that let’s use the following identity:

[q1, q2, . . . , qn][q2, . . . , qn−1]− [q1, . . . , qn−1][q2, . . . , qn] = (−1)n
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The base case with [q1, q2] is simply [q1, q2][]− [q1][q2] = (q1q2 +1)(1)− (q1)(q2) = 1 = (−1)2.
As for the inductive step,

[q1, q2, . . . , qn][q2, . . . , qn−1]− [q1, . . . , qn−1][q2, . . . , qn] =

(qn[q1, q2, . . . , qn−1] + [q1, . . . , qn−2])[q2, . . . , qn−1]− [q1, . . . , qn−1](qn[q2, . . . , qn−1] + [q2, . . . , qn−2]) =

[q1, . . . , qn−2][q2, . . . , qn−1]− [q1, . . . , qn−1][q2, . . . , qn−2] = −inductive hypothesis = (−1)n

As such we have this identity. How is it useful, one may ask? Well, let’s go back to the λ
that we know must exist. Applying this property to [q1, q2, . . . , qk, qk, . . . , q1] gets us

1 = [q1, . . . , qk, qk, . . . , q1][q2, . . . , qk, qk, . . . , q2]− [q1, . . . , qk, qk, . . . , q2][q2, . . . , qk, qk, . . . , q1]

Note that [q1, . . . , qk, qk, . . . , q1] is just p and the second half is simply λ and λ in reverse
order, or λ2. As such we get that

1 = p[q2, . . . , qk, qk, . . . , q2]− λ2 =⇒ −1 ≡ λ2 mod p

As such, if we take the only satisfactory square root of negative 1 (since p is 1 mod 4 we
showed that two exist - namely negatives of each other and as such exactly one of them is
between 2 and p−1

2
) we can then apply the above construction to obtain our sum of squares.

Let’s finish it off with an example. Take 1009, a random prime thats 1 mod 4. Now, use
some other technique (the python code I stole used Tanelli-Shanks but there are others) to
calculate a square root of −1 - in this case 469. Now time to obtain the {q1, . . . }. Applying
the algorithm above we get [2, 6, 1, 1, 1, 1, 6]. As such our two squares are [2, 6, 1, 1] and [2, 6, 1]
which evaluate to 28 and 15 respectively. As such we have that 1009 = 282+152 = 784+225.
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