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1 Introduction

Spanning trees are an important topic of study in graph theory. On the surface
level, they are useful in determining how to connect different cities together,
but they can also be used in connecting computer networks and electrical grids.
Today we will explore how to count the number of spanning trees in a graph or
system. Let us begin with some definitions:

Definition 1 A graph G = (V,E), where V is the set of vertices in the graph
and & is the set of edges in the graph.

Throughout this paper, we will let n be the number of nodes in a given graph
and m be the number of edges. One important structure we can define given a
graph G is a spanning tree, S.

Definition 2 A spanning tree S is a set of n — 1 edges such that for any two
nodes, i,j € V, there is some sequence of nodes vi,va,...,vx € V such that for
all t where 1 <t < k—1, there is an edge from vy to vi41 tn S. In other words,
a spanning tree is a minimal collection of edges that connects all nodes in V.

In this paper, we will explore Kirchhoff’s Theorem, which tells us the number
of spanning trees in a graph.

2 Kirchhoff’s Theorem

Before we can introduce Kirchhoff’s Theorem, there is some more notation to
introduce:

Definition 3 The degree matriz D of a graph G is an n by n matriz, where
D;; =0ifi+#j and D;; = |i|, where |i| represents the degree of node i.

Definition 4 The adjacency matriz A of a graph G is an n by n matriz where
Aij = 1 iff there exists an edge connecting i and j, and A;; = 0 otherwise.

Definition 5 M|s] denotes the matriz M with its sth row and column removed.



Definition 6 Let ¢(G) denote the number of spanning trees in G.

Definition 7 G\i denotes the graph G with the node i removed, and G\e de-
notes the graph G with the edge e removed. Furthermore, G/e represents the
graph G with the edge e contracted. In other words, the two vertices the edges
combined are merged into one vertex, with all the edges from both original ver-
tices.

Finally, for convenience, we will let Lg = D — A. This is known as the
Laplacian of G. Let us now introduce Kirchhoff’s Theorem:

Theorem 1 For all s where 1 < s <n, det ((D — A)[s]) = ¢(G).

In English, the determinant of the Laplacian with any specific row and col-
umn removed gives the number of spanning trees in G.

3 Proof of Kirchhoff’s Theorem

We will prove this theorem using induction on our edges.

3.1 Base Case

Our base case will be any graph with isolated vertices.
We will require the follow lemmas:

Lemma 1 det(D — A) =0

We know that if any row in a matrix can be written as a linear combination
of other rows in that matrix, the matrix has a determinant of 0. Note that in
D — A, every row and column has a sum of 0. If M} indicates the kth row of
matrix M, let R be row vector where:

n—1
R=Y(D- ),
k=1
Then, since the column sums are 0, we have that (D — A),, = —R. Thus, we

have written a row as a linear combination of other rows, and shown Lemma 1.
Furthermore, we will take the following as given:

Lemma 2 If E;; is an n by n matriz with a 1 at i,7 and 0’s everywhere else:
det (A + E;;) = det(A) + det (Ali])

Some simple intuition for this lemma lies in the row-expansion definition of
the determinant. Take the matrix of cofactors C', where Cj; is the determinant
of matrix C' with the ith row and jth column removed, then multiplied by
(—1)**7. Then, for any row i,



det(M) =Y M;;Cy;
j=1

If we look at how this changes when we increment a specific element, we can
see that it simply adds the cofactor the determinant, which is what we see in
our original equation.

Let i be our isolated node. Then, let G' = G\i. Clearly, (D' — A") =
(D — A)[i]. Thus,

det (D — A)[i]) = det (D' — A" = 0

by Lemma 1. Since i is isolated, 0 is indeed the number of spanning trees in

G.

3.2 Inductive Step

We will prove this theorem for a general ¢ where ¢ denotes the row and column
we are removing from G. Due to our base case, we can assume that there exists
some base case e = (i, 7).

The following idea will be the basis for our induction:

(@) = ¢(G/e) + ¢(G\e)

In one case, we are forced to use e by contracting it, and in the other, we
exclude e entirely.

Now, consider the difference between Lg[i] and Lg\([i]. The only difference,
is that (Lg[i]);; =1+ (Lg\e[i])jj. In other words, Lg(i| = Ej; + L \c[i]. Then,
applying Lemma 2:

det (Lg[i]) = det (Leno[i] + ;)
= det (Leno[i]) + det (L o[i][4])

However, when we remove both the ¢th and jth rows and columns, the
edge e between them is insignificant. Thus, L .[i][j] = L¢li][j]. Furthermore,
consider Lg/.[i]. Since we have contracted e, i and j now represent the same
node. Thus, Lg/.[i] = L¢li][j]. Then:

det (Lo [i]) + det (Le[i][j]) = det (Le[i]) + det (Lali][j])
= det (Len[i]) + det (Lg .li])
= c(G\e) +c(Ge)
= (@)

concluding the proof.



