When are binomial coeflicients perfect powers?

Rasika Iyer

1 Introduction

When is (2) equal to m!? Tt is fairly simple to see that there are infinitely many solutions when
k=1=2. That is, (;) =m?. From here, we know

n(n-1) =2m?
(2n-1)2((2n-1)? - 1) = 2m?
(2n-1)%4n(n-1) = 2m?
(2(2m(2n-1))* = 2m?

((2n -1)2

. ): (2m(2n-1))>.

Starting with (g) = 62, we obtain infinitely many solutions, with the next one being (229) = 2042
However, this does not yield all the solutions. For example, (520) = 352 starts another sequence,

as does (16282) = 11892, For k = 3, it is known that (g) = m? has the unique solution n = 50 and
m = 140. But now, we are at the end of the line. For k >4 and [ > 2, no solutions exist. We will
prove that this is true for [ = 2. An extension is required to prove that [ > 3, but the crux of the
proof lies below.

2 Binomial coefficients are (almost) never powers

Theorem 2.1. Forn > 2k, the equation (Z) =m! has no integer solution with1>2 and 4 < k < n—4.

Proof. Suppose the theorem is false, and that (Z) = m!. We begin with, a strengthening of
Bertrand’s postulate:

Lemma 2.1 (Sylvester’s Theorem). Ifn > 2k, then at least one of the numbersn, n—-1,..., n-k+1
has a prime divisor p greater than k.

Note that for n = 2k we obtain precisely Bertrand’s postulate.

Remark 2.1. There is an equivalent of stating Sylvester’s Theorem: For n > 2k, the binomial

coefficient
(n) n(n-1)...(n-k+1)
k) k!

always has a prime factor p > k.
By Lemma 2.1, there is a prime factor p of (Z) greater than k, hence p! divides n(n—-1)...(n-
k +1). Clearly, only one of the factors n —i can be a multiple of p (because of p > k), and we
conclude p'|n -4, and therefore
n>p >k >k (1)

Consider any factor of the numerator written in the form n—-j = ajmé» , where a; is not divisible
by any nontrivial I-th power.

Lemma 2.2. Ifi=j, then a; = a;.



Proof. Assume a; = a; for some i < j. Then, m; >m; + 1 and
k>(n-i)-(n-j)= aj(mé —mé—) > a;((m; + 1)! —mé)
> ajlm?l > l(ajmé»)l/2 >I(n—-k+1)Y?

> l(% +1)M2 5 plf2

which contradicts n > k? from Equation 1. [ |

Next, we need to prove that the a;’s are the integers 1,2,. ..,k in some order. Since, by Lemma
2.2, they are all distinct, it suffices to prove that

apay .. .ap_1 divides k!.

Substituting n — j = ajmé. into the equation (Z)7 we obtain

l l
apay .. .ag-1(momy ... mg_1)" = klm
Cancelling out the common factors between mgm; ... mg_1 and m yields
U 1.1,
agayq . ..ap—1u = kv

with ged(u,v) = 1. It remains to show v = 1.If not, then v contains a prime divisor p. Since
ged(u,v) =1, p must be a prime divisor of aga . ..ax-1 and hence is less than or equal to k.

Lemma 2.3 (Legendre’s theorem). The number n! contains the prime factor p exactly

|5

k>1LD

times.

By Lemma 2.3, we know that k! contains p to the power Zizlh%J' We now estimate the

exponent of p in n(n—-1)...(n-k+1). Let i be a positive integer, and let by < by <--- < b, be the
multiples of p* among n,n—1,...,n—k+ 1. Then bs = by + (s —1)p* and hence

(s—D)p'=bs-by<n-(n-k+1)=k-1,

-1
sslk. J+1§l£J+1.
p* D

So for each i the number of multiples of p* among n,...,n -k + 1, and hence among the a;’s,

which implies

is bounded by [pﬁJ + 1. This implies that the exponent of p in agay ...ar_1 is at most

x(5 1))

Taking both counts together, we find that the exponent of p in v’ is at most

(5] 5

and we have our desired contradiction, since v' is an I-th power. Indeed, since k > 4 one of the a;’s

must be equal to 4, but the a;’s contains no squares.
]
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