When are binomial coefficients perfect powers?

Rasika Iyer

1 Introduction

When is $\binom{n}{k}$ $\binom{n}{k}$ equal to m^l ? It is fairly simple to see that there are infinitely many solutions when $k = l = 2$. That is, $\binom{n}{2}$ $\binom{n}{2}$ = m^2 . From here, we know

$$
n(n-1) = 2m2
$$

(2n-1)²((2n-1)²-1) = 2m²
(2n-1)²4n(n-1) = 2m²
(2(2m(2n-1))² = 2m²

$$
{(2n-1)2 \choose k} = (2m(2n-1))2.
$$

Starting with $\binom{9}{2}$ $\binom{9}{2}$ = 6², we obtain infinitely many solutions, with the next one being $\binom{289}{2}$ $\binom{89}{2}$ = 204². However, this does not yield all the solutions. For example, $\binom{50}{2}$ 2^{50}) = 35² starts another sequence, as does $\binom{1682}{2}$ $\binom{382}{2}$ = 1189². For $k = 3$, it is known that $\binom{n}{3}$ $\binom{n}{3}$ = m^2 has the unique solution $n = 50$ and $m = 140$. But now, we are at the end of the line. For $k \ge 4$ and $l \ge 2$, no solutions exist. We will prove that this is true for $l = 2$. An extension is required to prove that $l \geq 3$, but the crux of the proof lies below.

2 Binomial coefficients are (almost) never powers

Theorem 2.1. For $n \geq 2k$, the equation $\binom{n}{k}$ ${k \choose k} = m^l$ has no integer solution with $l \geq 2$ and $4 \leq k \leq n-4$.

Proof. Suppose the theorem is false, and that $\binom{n}{k}$ $\binom{n}{k}$ = m^l . We begin with, a strengthening of Bertrand's postulate:

Lemma 2.1 (Sylvester's Theorem). If $n \geq 2k$, then at least one of the numbers n, $n-1,\ldots,n-k+1$ has a prime divisor p greater than k.

Note that for $n = 2k$ we obtain precisely Bertrand's postulate.

Remark 2.1. There is an equivalent of stating Sylvester's Theorem: For $n \geq 2k$, the binomial coefficient

$$
\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!}
$$

always has a prime factor $p > k$.

By Lemma [2.1,](#page-0-0) there is a prime factor p of $\binom{n}{k}$ ${k \choose k}$ greater than k, hence p^l divides $n(n-1)...(n-p)$ k + 1). Clearly, only one of the factors $n-i$ can be a multiple of p (because of $p > k$), and we conclude $p^l | n - i$, and therefore

$$
n \ge p^l > k^l \ge k^2 \tag{1}
$$

Consider any factor of the numerator written in the form $n-j = a_j m_j^l$, where a_j is not divisible by any nontrivial l-th power.

Lemma 2.2. If $i = j$, then $a_i = a_j$.

Proof. Assume $a_i = a_j$ for some $i < j$. Then, $m_i \ge m_j + 1$ and

$$
k > (n - i) - (n - j) = a_j (m_i^l - m_j^l) \ge a_j ((m_j + 1)^l - m_j^l)
$$

> $a_j l m_j^{l-1} \ge l(a_j m_j^l)^{1/2} \ge l(n - k + 1)^{1/2}$
> $l(\frac{n}{2} + 1)^{1/2} > n^{1/2}$

which contradicts $n > k^2$ from Equation [1.](#page-0-1)

Next, we need to prove that the a_i 's are the integers $1, 2, \ldots, k$ in some order. Since, by Lemma [2.2,](#page-0-2) they are all distinct, it suffices to prove that

 $a_0a_1 \ldots a_{k-1}$ divides k!.

Substituting $n - j = a_j m_j^l$ into the equation $\binom{n}{k}$ $\binom{n}{k}$, we obtain

$$
a_0a_1\ldots a_{k-1}(m_0m_1\ldots m_{k-1})^l=k!m^l
$$

Cancelling out the common factors between $m_0m_1 \ldots m_{k-1}$ and m yields

$$
a_0 a_1 \dots a_{k-1} u^l = k! v^l
$$

with $gcd(u, v) = 1$. It remains to show $v = 1$. If not, then v contains a prime divisor p. Since $gcd(u, v) = 1$, p must be a prime divisor of $a_0a_1 \ldots a_{k-1}$ and hence is less than or equal to k.

Lemma 2.3 (Legendre's theorem). The number n! contains the prime factor p exactly

$$
\sum_{k\geq 1} \left\lfloor \frac{n}{p^k} \right\rfloor
$$

times.

By Lemma [2.3,](#page-1-0) we know that k! contains p to the power $\sum_{i\geq 1} \left|\frac{n}{p^i}\right|$. We now estimate the exponent of p in $n(n-1)...(n-k+1)$. Let i be a positive integer, and let $b_1 < b_2 < \cdots < b_s$ be the multiples of p^i among $n, n-1, ..., n-k+1$. Then $b_s = b_1 + (s-1)p^i$ and hence

$$
(s-1)p^{i} = b_{s} - b_{1} \leq n - (n - k + 1) = k - 1,
$$

which implies

$$
s\leq \left\lfloor\frac{k-1}{p^i}\right\rfloor+1\leq \left\lfloor\frac{k}{p^i}\right\rfloor+1.
$$

So for each *i* the number of multiples of p^i among $n, \ldots, n - k + 1$, and hence among the a_j 's, is bounded by $\left\lfloor \frac{k}{p^i} \right\rfloor + 1$. This implies that the exponent of p in $a_0a_1 \ldots a_{k-1}$ is at most

$$
\sum_{i\geq 1}^{l-1} \left(\left\lfloor \frac{k}{p^i} + 1 \right\rfloor \right).
$$

Taking both counts together, we find that the exponent of p in v^l is at most

$$
\sum_{i\geq 1}^{l-1} \left(\left\lfloor \frac{k}{p^i} + 1 \right\rfloor \right) - \sum_{i\geq 1}^{l-1} \left\lfloor \frac{k}{p^i} \right\rfloor \leq l-1,
$$

and we have our desired contradiction, since v^l is an *l*-th power. Indeed, since $k \geq 4$ one of the a_i 's must be equal to 4, but the a_i 's contains no squares.

∎