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1 Introduction
When is (n

k
) equal to ml? It is fairly simple to see that there are infinitely many solutions when

k = l = 2. That is, (n
2
) =m2. From here, we know

n(n − 1) = 2m2

(2n − 1)2((2n − 1)2 − 1) = 2m2

(2n − 1)24n(n − 1) = 2m2

(2(2m(2n − 1))2 = 2m2

((2n − 1)2
k

) = (2m(2n − 1))2.

Starting with (9
2
) = 62, we obtain infinitely many solutions, with the next one being (289

2
) = 2042.

However, this does not yield all the solutions. For example, (50
2
) = 352 starts another sequence,

as does (1682
2

) = 11892. For k = 3, it is known that (n
3
) = m2 has the unique solution n = 50 and

m = 140. But now, we are at the end of the line. For k ≥ 4 and l ≥ 2, no solutions exist. We will
prove that this is true for l = 2. An extension is required to prove that l ≥ 3, but the crux of the
proof lies below.

2 Binomial coefficients are (almost) never powers

Theorem 2.1. For n ≥ 2k, the equation (n
k
) = ml has no integer solution with l ≥ 2 and 4 ≤ k ≤ n−4.

Proof. Suppose the theorem is false, and that (n
k
) = ml. We begin with, a strengthening of

Bertrand’s postulate:

Lemma 2.1 (Sylvester’s Theorem). If n ≥ 2k, then at least one of the numbers n, n−1,. . . , n−k+1
has a prime divisor p greater than k.

Note that for n = 2k we obtain precisely Bertrand’s postulate.
Remark 2.1. There is an equivalent of stating Sylvester’s Theorem: For n ≥ 2k, the binomial
coefficient

(n
k
) = n(n − 1) . . . (n − k + 1)

k!

always has a prime factor p > k.
By Lemma 2.1, there is a prime factor p of (n

k
) greater than k, hence pl divides n(n−1) . . . (n−

k + 1). Clearly, only one of the factors n − i can be a multiple of p (because of p > k), and we
conclude pl∣n − i, and therefore

n ≥ pl > kl ≥ k2 (1)

Consider any factor of the numerator written in the form n−j = ajm
l
j , where aj is not divisible

by any nontrivial l-th power.

Lemma 2.2. If i = j, then ai = aj.
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Proof. Assume ai = aj for some i < j. Then, mi ≥mj + 1 and

k > (n − i) − (n − j) = aj(ml
i −ml

j) ≥ aj((mj + 1)l −ml
j)

> aj lm
l−1
j ≥ l(ajml

j)1/2 ≥ l(n − k + 1)1/2

≥ l(n
2
+ 1)1/2 > n1/2

which contradicts n > k2 from Equation 1. ∎

Next, we need to prove that the ai’s are the integers 1,2, . . . , k in some order. Since, by Lemma
2.2, they are all distinct, it suffices to prove that

a0a1 . . . ak−1 divides k!.

Substituting n − j = ajm
l
j into the equation (n

k
), we obtain

a0a1 . . . ak−1(m0m1 . . .mk−1)l = k!ml

Cancelling out the common factors between m0m1 . . .mk−1 and m yields

a0a1 . . . ak−1u
l = k!vl

with gcd(u, v) = 1. It remains to show v = 1.If not, then v contains a prime divisor p. Since
gcd(u, v) = 1, p must be a prime divisor of a0a1 . . . ak−1 and hence is less than or equal to k.

Lemma 2.3 (Legendre’s theorem). The number n! contains the prime factor p exactly

∑
k≥1

⌊ n

pk
⌋

times.

By Lemma 2.3, we know that k! contains p to the power ∑i≥1⌊ n
pi ⌋. We now estimate the

exponent of p in n(n − 1) . . . (n − k + 1). Let i be a positive integer, and let b1 < b2 < ⋅ ⋅ ⋅ < bs be the
multiples of pi among n,n − 1, ..., n − k + 1. Then bs = b1 + (s − 1)pi and hence

(s − 1)pi = bs − b1 ≤ n − (n − k + 1) = k − 1,

which implies

s ≤ ⌊k − 1

pi
⌋ + 1 ≤ ⌊ k

pi
⌋ + 1.

So for each i the number of multiples of pi among n, . . . , n − k + 1, and hence among the aj ’s,
is bounded by ⌊ k

pi ⌋ + 1. This implies that the exponent of p in a0a1 . . . ak−1 is at most

l−1

∑
i≥1

(⌊ k
pi
+ 1⌋).

Taking both counts together, we find that the exponent of p in vl is at most

l−1

∑
i≥1

(⌊ k
pi
+ 1⌋) −

l−1

∑
i≥1

⌊ k
pi

⌋ ≤ l − 1,

and we have our desired contradiction, since vl is an l-th power. Indeed, since k ≥ 4 one of the ai’s
must be equal to 4, but the ai’s contains no squares.

∎
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