OF FRIENDS AND POLITICIANS

RAJIV NELAKANTI

1. INTRODUCTION

Here's the premise: we have a group of people, such that every two people share a mutual friend. Upon inspection, we see that there always appears to be a politician: a person that is friends with everybody. To mathematically state this, we turn to graph theory.

2. The Theorem

Theorem 2.1. Suppose that G is a finite graph in which any two vertices have precisely one common neighbor. Then there is a vertex which is adjacent to all other vertices.

Note: It is helpful to note that any graph with the desired properties is a windmill graph; that is, any such G can be thought of as a bunch of triangles, all adjoined at a common vertex to create a windmill. As you follow along the proof, keep the image of a windmill in mind to understand the properties of this class of graphs.

Proof. The proof I will provide is due to Paul Erdos, Alfred Rényi, and Vera Sós. Proof by contradiction. Suppose there exists some graph G with no vertex adjacent to all others. From here, the proof falls into two parts: one combinatorics, and the other linear algebra.

Part 1: Combinatorics. We begin by asserting that the C_4 -condition is satisfied, which means that no 4-cycle exists in G. This is obvious, because a 4-cycle implies there exists a pair of vertices with more than one mutual neighbor (draw out and inspect a 4-cycle to visualize this).

Lemma 2.2. Given the assumption, G is a regular graph; that is, d(u) = d(v) for any $u, v \in V$

Proof. First, we will prove this for nonadjacent u, v. Let d(u) = k, so that u has neighbors w_1, w_2, \ldots, w_k . By the common neighbor property, there exists some w_i adjacent to v, say w_2 , and some w_j adjacent to w_2 , say w_1 . Vertex v has w_2 as common neighbor to w_1 , and for $i \ge 2$, has z_i as common neighbor to w_i . Each z_i is distinct by the C_4 -condition, which implies that $d(v) \ge d(u)$. Symmetrically, $d(u) \ge d(v)$, and thus d(u) = d(v).

Thus, every vertex not adjacent to either u or v also has degree k. The only vertex remaining to prove has degree k is w_2 . But, as assumed, since there is no politician in G, w_2 has a non-neighbor, forcing its degree to be k as well.

Using the principle of inclusion-exclusion, we can conclude that the number of vertices in G is $k^2 - k + 1$. We can note that $k \ge 2$ because this equation forces G to be K_1 and K_3 for k = 1 and 2 respectively, both of which are graphs with a politician.

Date: April 4, 2017.

NELAKANTI

Part 2: Spectral Theory. Let A be the adjacency matrix of G; that is, the value of the i^{th} row and the j^{th} column is 1 if vertices g_i and g_j are adjacent and 0 otherwise. By the properties of G, we see that A^2 is the matrix of all 1's, except for the diagonal from the upper left to the lower bottom, which is filled with only k. We get that $A^2 = (k-1)I + J$, where I is the identity matrix and J is the matrix of only 1's. Through spectral voodoo, we get that A^2 has eigenvalues k^2 , with multiplicity 1, and k-1, with multiplicity n-1. A is pretty enough (symmetric and diagonizable) so that we can conclude that its eigenvalues are k and $\pm \sqrt{k-1}$. Of the n-1 eigenvalues of the latter, suppose r are $\sqrt{k-1}$ and s are $-\sqrt{k-1}$. Again, spectral magic gives us $k + n\sqrt{k-1} - n\sqrt{k-1} = 0$, since the sum of the eigenvalues of A is equal to its trace. We get $\sqrt{k-1} = \frac{k}{s-r}$. Since the square root of a natural number is equal to a rational number, it is an integer, say h (this should be pretty obvious). Then, $h(s-r) = h^2 + 1$. Since h divides $h^2 + 1$, h must be 1, so k = 2, which is a contradiction, as shown earlier. Whew!

3. Generalizations

We can look at this problem in a more general sense by rephrasing the theorem as such: Suppose G is a graph with the property that there is exactly one path of length l = 2 between any two vertices. Clearly, this is an equivalent statement, but it is in a more general form, because it begs the question of what such a graph with larger l might look like.

In fact, we have a whole conjecture that proposes that no graph with larger l can exist, attributable to Anton Kotzig.

Conjecture 3.1. Kotzig's Conjecture There are no finite graphs such that between any two vertices, there is exactly one path of length l, for all l > 2.

Kotzig and others have checked this conjecture up to l = 33 (painstakingly, I can only imagine), but a general proof evades our grasp yet.