
OF FRIENDS AND POLITICIANS

RAJIV NELAKANTI

1. Introduction

Here’s the premise: we have a group of people, such that every two people share a mutual
friend. Upon inspection, we see that there always appears to be a politician: a person that
is friends with everybody. To mathematically state this, we turn to graph theory.

2. The Theorem

Theorem 2.1. Suppose that G is a finite graph in which any two vertices have precisely one
common neighbor. Then there is a vertex which is adjacent to all other vertices.

Note: It is helpful to note that any graph with the desired properties is a windmill graph;
that is, any such G can be thought of as a bunch of triangles, all adjoined at a common
vertex to create a windmill. As you follow along the proof, keep the image of a windmill in
mind to understand the properties of this class of graphs.

Proof. The proof I will provide is due to Paul Erdos, Alfred Rényi, and Vera Sós. Proof
by contradiction. Suppose there exists some graph G with no vertex adjacent to all others.
From here, the proof falls into two parts: one combinatorics, and the other linear algebra.

Part 1: Combinatorics. We begin by asserting that the C4-condition is satisfied, which
means that no 4-cycle exists in G. This is obvious, because a 4-cycle implies there exists
a pair of vertices with more than one mutual neighbor (draw out and inspect a 4-cycle to
visualize this).

Lemma 2.2. Given the assumption, G is a regular graph; that is, d(u) = d(v) for any
u, v ∈ V

Proof. First, we will prove this for nonadjacent u, v. Let d(u) = k, so that u has neighbors
w1, w2, . . . , wk. By the common neighbor property, there exists some wi adjacent to v, say
w2, and some wj adjacent to w2, say w1. Vertex v has w2 as common neighbor to w1, and
for i ≥ 2, has zi as common neighbor to wi. Each zi is distinct by the C4-condition, which
implies that d(v) ≥ d(u). Symmetrically, d(u) ≥ d(v), and thus d(u) = d(v).

Thus, every vertex not adjacent to either u or v also has degree k. The only vertex
remaining to prove has degree k is w2. But, as assumed, since there is no politician in G, w2

has a non-neighbor, forcing its degree to be k as well. �

Using the principle of inclusion-exclusion, we can conclude that the number of vertices in
G is k2− k + 1. We can note that k ≥ 2 because this equation forces G to be K1 and K3 for
k = 1 and 2 respectively, both of which are graphs with a politician.
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Part 2: Spectral Theory. Let A be the adjacency matrix of G; that is, the value of the
ith row and the jth column is 1 if vertices gi and gj are adjacent and 0 otherwise. By the
properties of G, we see that A2 is the matrix of all 1’s, except for the diagonal from the upper
left to the lower bottom, which is filled with only k. We get that A2 = (k− 1)I +J , where I
is the identity matrix and J is the matrix of only 1’s. Through spectral voodoo, we get that
A2 has eigenvalues k2, with multiplicity 1, and k − 1, with multiplicity n − 1. A is pretty
enough (symmetric and diagonizable) so that we can conclude that its eigenvalues are k and
±
√
k − 1. Of the n − 1 eigenvalues of the latter, suppose r are

√
k − 1 and s are −

√
k − 1.

Again, spectral magic gives us k + r
√
k − 1− s

√
k − 1 = 0, since the sum of the eigenvalues

of A is equal to its trace. We get
√
k − 1 = k

s−r
. Since the square root of a natural number

is equal to a rational number, it is an integer, say h (this should be pretty obvious). Then,
h(s − r) = h2 + 1. Since h divides h2 + 1, h must be 1, so k = 2, which is a contradiction,
as shown earlier. Whew! �

3. Generalizations

We can look at this problem in a more general sense by rephrasing the theorem as such:
Suppose G is a graph with the property that there is exactly one path of length l = 2 between
any two vertices. Clearly, this is an equivalent statement, but it is in a more general form,
because it begs the question of what such a graph with larger l might look like.

In fact, we have a whole conjecture that proposes that no graph with larger l can exist,
attributable to Anton Kotzig.

Conjecture 3.1. Kotzig’s Conjecture There are no finite graphs such that between any two
vertices, there is exactly one path of length l, for all l > 2.

Kotzig and others have checked this conjecture up to l = 33 (painstakingly, I can only
imagine), but a general proof evades our grasp yet.
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