
The Sylvester-Gallai Theorem

Justin French

March 25, 2017

1 The Theorem

The statement of the Sylvester-Gallai theorem is fairly innocuous— it merely
states that, given a finite set of at least three points P in the Euclidean plane
R2 (not all collinear) there exists a line l passing through exactly two of those
points. The theorem seems obvious, at least in the sense that it is hard to
conceive what a counterexample might look like (even in a non-Euclidean
geometry where counterexamples do exist), but despite this simplicity the
theorem was only proven decades after it was first posed.

2 Proof Number One

In the following proof, pay attention to which properties of Euclidean space
we use in this proof, as those properties will be important in determining to
which kinds of spaces this theorem generalizes.

Proof: Let P be a finite set of points, not all collinear. Let L be the
set of all lines passing through at least two points in P . Consider the set of
pairs (p, l) where p ∈ P and l ∈ L. Since P is finite, L is finite and there are
finitely man such pairs. Hence, we can consider the pair (p0, l0) such that the
distance d(p0, l0) is minimal. Consider the point k on l0 so that the line from
p0 to k is perpendicular to l0. If the Sylvester-Gallai theorem were false, then
l0 passes through three points in P , so on one side of k there are two points
in P . (If k itself is in P , then that counts as either side.) Let p1 be the point
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nearer to k and let q1 be the one further. Consider the line l1 passing through
p0 and q1. This line is in L, since it passes through at least two points in P .
p1 is in P by definition. So we have a pair (p1, l1) in P × L, and it is clear
from the image that the distance d(p1, l1) is shorter than d(p0, l0). However,
we assumed that the latter distance was minimal, so we have a contradiction.
Hence, we have proven the Sylvester-Gallai theorem.

Figure 1: depiction of the first proof

Which properties of R2 did we use in that proof? First, we used the
concept of distance when we declared d(p0, l0) was minimal. Second, we used
the concept of betweenness when we constructed p1 and q1. It turns out that
betweenness is the only concept necessary for the proof, and in any space with
a sufficiently strong notion of betweenness the Sylvester-Gallai Theorem will
be true. One might first try to adapt this first proof into one that does
not use distance, for example by constructing p1 and q1 as above and then
analogously constructing a p2 and q2, etc. There would be infinitely many
points in a set of finitely man points. However, it is not clear how to show
that these points are all distinct without using some concept of distance. In
order to prove the theorem without using distance, we must first introduce
the concept of a ’projective dual.’

3 Projective Planes and Duality

A projective plane is a set of ’points’ P and a set of ’lines’ L, along with an
incidence relation I that determines which points lie on which lines. I must
satisfy the following properties:
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1. Given two points, there is exactly one line passing through both points.

2. Given two lines, there is exactly one point lying on both lines.

3. Every line contains at least three points. (Note that this does not
contradict the Sylvester-Gallai theorem because the set of points in
the theorem do not form a projective plane.)

4. There exists a set of four points so that no line passes through more
than two points of that set.

For an example, take the Fano plane: the points are the points, the lines are
the lines and the circle, and the incidence relation is the obvious one where
the points drawn on specific lines lie on those lines. It is easy to check that
that relation satisfies the four properties. (For an example set for the last
axiom, take each corner and the center.) Note that the Euclidean plane R2

is not a projective plane, because parallel lines do not intersect.

Figure 2: The Fano Plane (image due to Wikipedia)

The points and lines in a projective plane do not need to be literally
points and lines: we saw in the Fano plane that a circle could be considered
a line. In this example, the circle still seems somewhat ’linish,’ as it is one
dimensional in the diagram. However, in general P and L are just sets.
There is no reason elements of L should resemble one-dimensional objects.
A corollary of that realization is the concept of the dual plane.
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Given a projective plane (P,L, I), we define its projective dual to be the
plane (L, P, I∗), where l lies on p with respect to I∗ if and only if p lies on
l with respect to I. It is not difficult to check that I∗ satisfies the above
axioms. We can translate between theorems in a plane and its dual using the
concept of plane dual statements. The plane dual of some statement simply
replaces ’line’ with ’point’ and ’point’ with ’line’ and related substitutions.
For example, if one wanted to say, ”three points lie on the same line” the dual
statement would be ”three lines intersect at the same point.” If a statement
is provable in some plane, its dual must be provable in the dual plane, as the
dual proof can be constructed by simply taking the dual of each line in the
original proof. Often, the dual theorem is easier to prove than the original
theorem, as is the case with the Sylvester-Gallai Theorem.

What is the dual of the Sylvester-Gallai Theorem? First, let us restate
the original version of the theorem: ”given a finite set of at least three points
in R2, not all on the same line, there exists a line passing through exactly
two points in that set.” To dualize this statement, replace line with point
and point with line: ”given a finite set of at least three lines, not all passing
through the same point, there exists a point lying on exactly two lines in
that set.” However, this dual statement is incomplete: in the original version,
we know the points are in R2. However, in the dual version, the lines lie not
in R2, but in the projective dual of R2. However, R2 is not a projective plane,
so it doesn’t have a dual. Fortunately, this problem can be fixed with the
concept of the real projective plane.

4 The Real Projective Plane

The real projective plane RP2 is a generalization of the Euclidean plane so
that any two lines intersect. We can define it by adding a ’point at infinity’
for every possible slope m (there is also a point for vertical lines with no or
infinite slope). All lines of slope m (and only lines of slope m) pass through
the corresponding point at infinity. We define the line at infinity consisting
of every point at infinity.

We can check that this plane satisfies each axiom. First, any two points
define exactly one line: if both points are finite, the line is whichever Eu-
clidean line passes through them; if one is finite and one is infinite (say
corresponding to slope k), the line is the unique line with slope k passing
through the finite point. Finally, two infinite points define the line at infinity.
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Hence the first axiom holds. For the second axiom, we know that Euclidean
lines with different slopes intersect wherever they would in the Euclidean
plane, parallel lines intersect at the corresponding point at infinity, and the
line at infinity intersects a Euclidean line at the point at infinity which corre-
sponds to its slope. The third axiom is obvious from the construction of the
plane. For the final axiom, we can take any four points defining a quadri-
lateral in Euclidean space, since the additional line at infinity will not affect
those points’ independence.

To get a visualization of the real projective plane, one can perform the
following construction. Imagine a sphere placed above the Euclidean plane
in 3-space. Given some point in the plane, consider the line passing through
that point and the center of the sphere. This line intersects the sphere at a
pair of antipodal points. Every point in the plane can be mapped to a pair
of antipodal points of the sphere in this manner. Lines are mapped to great
circles (or equators) of the sphere. At this point, every point on the sphere is
covered except for the equator that is parallel to the plane. That is where we
bring in the points at infinity. Each point at infinity corresponds to a slope.
Each slope corresponds to a line passing through the unmapped equator and
the center of the sphere. Thus, each point at infinity corresponds to a pair
of antipodal points on the equator, and vice versa. So one can think of the
real projective plane as a sphere with antipodal points identified.

Now that we have defined the real projective plane, we can discuss its
dual. Recall that in a dual plane, the points become lines and the lines
become points. What happens if we do this to the real projective plane? It
turns out that RP2 is its own dual. We can prove this using the spherical
model of the projective plane. Given a pair of antipodal points on the sphere,
they define a line passing through the center of the sphere. There is a unique
plane normal to that line, and the intersection of the plane with the sphere
defines a great circle— that is a line in the real projective plane. Working
backwards, a great circle defines a plane, and there is a unique line normal
to that plane passing through the center of the sphere. The intersection of
that line with the sphere is a pair of antipodal points, i.e. a point in the real
projective plane. This mapping is clearly a bijection, to check that it is an
isomorphism we must show that it preserves incidence. If some point p lies
on a great circle, then the line passing through p and the center of the sphere
lies within the plane defined by the circle. Thus, the line normal to that
plane lies within the plane normal to the line generated by p. Similarly, the
intersection of that line with the sphere lies on the intersection of the plane
with the sphere. Hence incidence is preserved and it is an isomorphism.
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5 Proof Number Two

Now that we have the vocabulary of the real projective plane, we can finally
prove the Sylvester-Gallai theorem without using distance. First, instead
of points in R2, we will prove the theorem for points in RP2. Any coun-
terexample in the Euclidean plane gives rise to a counterexample in the real
projective plane, since the line at infinity is the only additional line, and
it will not pass through any points in the Euclidean plane. So proving the
theorem for the projective plane will imply the result in the Euclidean plane.

Since RP2 is its own dual, we can prove the dual of the Sylvester-Gallai
theorem instead. That is, we will prove the following theorem:

Theorem: Given a finite set at least three lines in the real projective
plane, not all passing through a single point, there exists a point lying on
exactly two lines in that set.

Proof: Since not all of the points intersect at the same point, pick three
that don’t. They partition the projective plane into four distinct triangular
regions. Below is a diagram illustrating these four regions. Now consider the
point Q0, the intersection of two of those lines. If Q0 lies on only two lines,
we are done, so assume there is a third line l0. Pick one of the triangular
regions into which that line passes. It partitions that triangle into two smaller
triangles, and it intersects the base of the triangle at some point. Call that
point Q1. Again, if Q1 lies on just two lines we are done, so assume there
is a third line l1. l1 passes through one of the smaller triangles cut by l0.
Repeating the process, Q2 is the intersection with l1 and the base of that
triangle. We know that Q2 is distinct from the previous points because it
lies within a triangle in which the other points do not lie. Similarly, we can
construct Q3, Q4, etc., and since each of these points exists in a new smaller
triangular region they must be distinct. However, a finite set of lines cannot
have infinitely many intersections, so we have a contradiction.
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Figure 3: The numbered regions are the four triangular regions in the pro-
jective plane.

Figure 4: depiction of the second proof
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