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1 Introduction

Theorem 1.1 (Pigeon Hole Principle). With n things and m boxes, you must
have put at least

⌈
n
m

⌉
in a box.

Proof. Let us suppose that total “n” number of pigeons are to be put in “m”
number of pigeonholes and n > m. Let us assume there is no pigeonhole with
at least n

m pigeons. In this case, every pigeonhole will have less than n
m pigeons.

Therefore the number of pigeons in each pigeon hole < n
m and the total numbers

of pigeons is smaller than the number of pigeonholes. There are m pigeonholes
so the total number of pigeons is < m × n

m and therefore < n. This can’t be
because our definition is that n is the number of pigeons.

1.1 Basic uses of Pigeonhole

Example 1.1. Prove that in any group of six people there are either three
mutual friends or three mutual strangers, assuming that the friendship is always
reciprocated.

Proof. Represent the people as vertices on a graph, and denote friendships with
red edges and “stranger-ship” with blue edges. We will show that there exists
a monochromatic triangle. Consider the relationship of P1 to the 5 others. By
the pigeonhole principle, 3 of the others must have the same relationship to P1.
Without loss of generality, say P2, P3, P4 are connected to P1 by red edges.
Consider the edges between P2, P3, and P4. If any of them are red, then we
have a red triangle. If not, we have a blue triangle.

Example 1.2. Consider any five points P1, ...P5 in the interior of a square S
of side length 1. Show that one can find two of the points at distance at most√

2
2 apart.

Proof. Consider partitioning the square into 4 sub-squares. By the pigeonhole
principle, 2 of the points must be in one “sub-box.” The distance between those
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two points must be less than the diameter of the sub-box:
√
2
2 (the length of the

sub-box’s diagonal). This proves the desired result.

Example 1.3. A chess-master has 77 days to prepare for a tournament. He
wants to play at least one game per day, but not more than 132 games. Prove
that there is a sequence of successive days on which he plays exactly 21 games.

Proof. Define Si (1 ≤ i ≤ 77) as the total number games the chess-master
plays from day 1 up to day i. Because she plays at least one game a day,
1 ≤ S1 < S2 < . . . < S77 ≤ 132 (i.e. the Si

′s are distinct). Define Ti = Si + 21.
Note that the Ti

′s are all distinct. Now, out of the Si’s and Ti’s, there are
77 × 2 = 154 numbers, but these numbers can take at most 132 + 21 = 153
possible values. By the pigeonhole principle, two of the numbers are equal.
This implies that for some i, j, Sj = Ti = Si + 21. Hence, the chess-master
plays exactly 21 games in the consecutive block from day i + 1 to day j.

2 Number Theory

Theorem 2.1. If a is irrational, there exists infinite p
q such that∣∣∣∣a− p

q

∣∣∣∣ < 1

q2

Proof. Let M be any positive integer. Define {x} = x − bxc. We have the
sequence {0}, {a}, {2a}, ..., {Ma} that is in [ j−1M , j

M ) for M ≤ j > 0. So, there
exists j and k such that |aj − ak| < 1

M . Expanding, that is a(j − k) − bjac −
bkacka = a(j − k) + INT . So, we have a(j − k) < 1

M . let p = bj − kc and
q = j − k. So, we have∣∣∣∣a− p

q

∣∣∣∣ = |qa− p| =
∣∣∣∣j − ka− bj − kc

q

∣∣∣∣ =

∣∣∣∣< 1
M

< M

∣∣∣∣ < 1

M2
<

1

q2
.

Theorem 2.2. If there is a sequence of mn + 1 numbers

a1, a2, a3, a4, . . . , amn+1

then there exists either an increasing subsequence of length m+1 or a decreasing
subsequense of size n + 1.

Proof. Let ti be the longest increasing subsequence starting at ai. If there
exists a ti > m, then we have an increasing subsequence of lenght m + 1.
If not, ti ∈ [1,m]. Then by pigeonhole there must be n + 1 tji ’s such that
tj1 = tj2 = · · · = tjn+1 for some tjs with ji < ji+1. Let them be equal to s.
Let’s look at the relationship between aj1 and aj2 . If aj2 > aj1 then there is an
increasing subsequence of length s + 1 satrting at aj1 . That is impossible, so
aj2 < aj1 . So, for any i < k aji > ajk . So, we have a decreasing subsequence of
length n + 1 starting at aj1 . Q.E.D.
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3 Counting and Probability

Example 3.1 (Turkeys). On thanksgiving, two or more of the consumed turkeys
will have the same weight when rounded to the nearest millionth of a pound.

Proof. Turkeys weigh roughly 15 pounds, with the largest on record at 37
pounds. If we could weigh all the turkeys to a millionth of a pound, then
there are 37 million possible values. There are 46 million turkeys consumed on
Thanksgiving. By the pigeonhole principle, two of those turkeys must have the
same weight to the nearest millionth of a pound because 47 × 106 > 37 × 106.
We can be even more precise. There must be at least 10× 106 turkeys with the
same weight to a millionth of a pound.

Example 3.2. Gary is training for a triathlon. Over a 30 day period, he pledges
to train at least once per day, and 45 times in all. Then there will be a period
of consecutive days where he trains exactly 14 times.

Proof. Let Si indicate the cumulative number of workouts by day i. Since each
day contains one workout, and the total number of workouts is 45, we know
that:

S1 < S2 < · · · < S30 = 45

We want to prove there is some place with i < j such that Si + 14 = Sj . Start
by adding 14 to every term in the inequality:

S1 + 14 < S2 + 14 < · · · < S30 + 14 = 59

The two inequalities imply there are 60 numbers (S1, S2, . . . , S30 and S1 +
14, S2 + 14, . . . , S30 + 14) that can assume any of the 59 integer values from
1 to 59. By the pigeonhole principle, two of the numbers must be the same.
Which two? Notice that none of the numbers S1 < S2 < · · · < S30 could
possibly be equal to one another (Rick takes at least one workout every day,
so the sequence is strictly increasing). The same logic is true for the group
S1 + 14, S2 + 14, . . . , S30 + 14. Therefore, we must have one value from the
group S1 < S2 < · · · < S30 equal to one of the values from the group S1 +
14, S2 + 14, . . . , S30 + 14, which is exactly what we wanted to prove.

Example 3.3. For any 5 points placed on a sphere, some hemisphere must
contain 4 of the points?

Proof. Consider the great circle through any two of the points. This partitions
the sphere into two hemispheres. By the pigeonhole principle, 2 of the remaining
3 points must lie in one of the hemispheres. These two points, along with the
original two points, lie in a closed semi-sphere.

Example 3.4 (Birthday Problem). What is the approximate probability that in
a group of n > 2 people, at least 2 of them have the same birthday?
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Proof.

1− p(n) = p(n) =

n−1∏
k=1

(1− k

365
)

because it is the product of the chances that it doesn’t happen. What about
the number of people needed for a fifty percent chance?

Example 3.5. What is the minimum number of people such that p(n) < 1
2?

Proof.

p(n) <
1

2
so

n−1∏
k=1

(1− k

365
) <

1

2

because 1− k < e−x

e−(n(n−1))/(2×365) <
1

2

solve for n to get
n2 − n > 2× 365 ln 2

730 ln 2 ≈ 505.997

so when n = 23, n2 − n = 506 which is barely above 505.997 So to get more
than a 50% chance for 23 people. For 22 people, 222 − 22 < 2 × 365 ln 2, so it
won’t work.

4 Real Life Applications

4.1 Computer Science

Example 4.1 (Lossless Compression Algorithm). No universally lossless com-
pression algorithm exist.

Proof. Let us call the input sequence L and the output O. Because this is a
compression algorithm, the length of O (o) must be less than the length of L
(l). The number of possible combinations for the input sequence is (2l) and for
the output sequence it is (2o). By the pigeon hole principle, multiple inputs
must go to one output. If this happens, then their is no way of getting one of
the values back when you decompress so it can’t be lossless.

Example 4.2 (Collisions in Hash Tables). Collisions are inevitable in a finite
hash table.

Proof. The number of possible keys exceeds the number of indices in the array.
The number of possible combinations for the input is (nl) and for the output
it is (no). Since l < o, nl < no. By the pigeonhole principle there must be a
collision because multiple values must go to the same hash number.
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4.2 Formal Language Theory

Lemma 4.1 (Pumping Lemma). For any regular language L, any sufficiently
long word w which is in L can be split into three parts such as w = xyz, such
that all the strings xykz for k ≥ 0 are also in L.

Proof. In Formal Language Theory, for every regular language there is a finite
state automation (FSA) that accepts a word only if it is in the language. The
number of states in the FSA is called the pumping length p. We take a word w
with 1 more state than the pumping length p. Let q0 · · · qp be the sequence of
the next p states during the FSA for a word length greater than the pumping
length. Because the FSA only has p states the p + 1 visited states (0 to p)
according to the pigeonhole principle it must include a repetition. Let say this
state is qs. The transitions that take the FSA from the first instance of qs to
the second match some string y. If we repeat this than it will still be part of
the language.

4.3 Art Gallery Problem

Theorem 4.2 (Chvátal’s art gallery theorem).
⌊
n
3

⌋
guards are always sufficient

and sometimes necessary to guard a simple polygon with no holes and n vertices.

Proof. This proof is due to Steve Fisk. First, triangulate the polygon ( without
adding vertices). Then 3-color the graph. To show that is possible, we observe
the dual graph which is an graph having a vertex on every triangle and an edge
for every pair of adjacent triangles. This dual graph is a tree because any cycle
would form the boundary of a hole in the polygon, contrary to our assumption
of there being no holes. When there are multiple triangles, the dual graph must
have a vertex with only one neighbor which corresponds to a triangle that is
adjacent to the other triangles along only one side. The polygon formed by
removing this triangle has a 3-coloring by induction and is easily extended to
the additional vertex of the removed triangle. Once a 3-coloring is found, every
triangle has three color. The vertices with any one color form a valid guard set.
Since the three colors divide the n vertices of the polygon, the color with the
fewest vertices forms a guard set with at more

⌊
n
3

⌋
guards.
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