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Abstract

We examine Monsky’s theorem, which states that if we try to dissect a
unit square into n triangles of equal area, then n must be even. We prove
this through applications of Sperner’s Lemma in combinatorial topology
and 2-adic valuations.

1 Introduction

Consider the following situation: we want to dissect a square into n nonover-
lapping triangles of equal area. This is trivial if n is even: we can divide the
horizontal sides of the square into n

2 segments of equal length, which determines
a dissection of the square into n

2 congruent rectangles and then draw the diag-
onal of each rectangle (see Figure 1). What about the case when n is odd? Is
such a dissection possible?
This problem arose when Fred Richman was preparing a master’s exam, in 1965.
In fact, the question was first asked about a rectangle, instead of a square. If
we consider the cartesian coordinate plane (the xy-plane), using horizontal or
vertical dilations, if necessary, we can assume without loss of generality that our
rectangle is the unit square.
At first the problem seemed to be easy, but Richman could not find a complete
solution for it. He found the such a dissection is impossible for n = 3 and 5,
and if it exists for some n, then it exists for n+2. He presented the question to
his colleague, John Thomas, who got some more progress toward the solution,
but could not solve it for completely. Thomas found that for the unit square
there is no such a dissection where all the vertices of the triangles have rational
coordinates with odd denominators.
We present the proof of Monsky’s theorem based on applications of 2-adic val-
uations, a combinatorial topology result (Sperner’s Lemma), and the fact that
those can be extended to R. We will end with further applications such as bal-
anced polygons in tropical geometry and similar theorems inspired by Monsky’s
theorem.
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2 Background

2-adic Valuations

Definition 1.1: Consider a field F . The absolute value | · | on F is a map to R
and satisfies the following properties:

1. |x| > 0 for all x ∈ F ̸= 0

2. |x| = 0 if and only if x = 0

3. |xy| = |x||y| for all x, y ∈ F

4. |x+ y| ≤ |x|+ |y| for all x, y ∈ F

If it also satisfies the ultrametric inequality |x + y| ≤ max(|x|, |y|) for all
x, y ∈ F then the absolute value is called non-archimedean.
Definition 1.2: The 2-adic non-archimedean absolute value onQ is |·|2 : Q → R
defined by |x|2 := 2−v2(x), where v2(x) = v2(2

n a
b ) where a, b are odd integers

and n ∈ Z.
Lemma 1: Claude Chevalley’s theorem states that there exists such a function
which extends the p-adic absolute value to R, and we will denote this function
as |x|′p = p−vp(x)

Proof. (do we need to prove this? Will add later if needed)

Sperner’s Lemma

First, let a labelling of the plane into 3 labels, P0, P1, P2 be determined by the
following:

• P0 := (x, y) : |x|′2 < 1, |y|′2 < 1

• P1 := (x, y) : |x|′2 ≥ 1, |x|′2 ≥ |y|′2

• P2 := (x, y) : |y|′2 ≥ 1, |y|′2 > |x|′2
Definition 2.1: Given a polygon P , the dissection of P is the partitioning of
the polygon into triangles. Equidissection is the dissection of P into equal parts.
Definition 2.2: Consider a polygon P that is dissected into triangles Ti. Label
the vertices of the triangles P0, P1, and P2. A segment is called a complete edge
if its endpoints are P0 and P1. If the triangle has corner endpoints of all three
vertices, we will call the triangle a complete triangle.

Sperner’s Lemma: Consider a triangulation of a polygon R such that each
vertex is labeled either P0, P1, or P2. Then the number of complete triangles
in R and the number of complete edges on the boundary of R have the same
parity.
Proof. We apply a double counting combinatorial argument. Place a dot on
each side of a complete edge. We want to count the number of dots in two
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different ways. Firstly, each interior segment contributes either 0 or 2 dots,
while each boundary segment contributes either 0 or 1 dots. Next, we count the
number of dots in the interior of each triangle in the dissection. By construction,
complete triangles contain one dot while the rest contain an even number of
dots. Therefore, the parity of the number of the dots in the interior of all the
triangles is equal to the number of dots contribute by all the contributed by all
the complete edges on the boundary. Essentially, the number of dots is equal
to the number of complete edges on the boundary of R (mod 2). Therefore, the
parity of the number of complete edges on the boundary of R is the same as the
number of complete triangles in R.

[Sperner’s lemma can be used to relate the boundary of the square to the
triangles in its dissection. However, in order to apply this lemma, we will need
a method of labelling the vertices of the triangulation. Conveniently, the p-adic
absolute value can serve this purpose.]

Proposition 2.3 Let points (x0, y0), (x1, y1), and (x2, y2) be points with labels
P0, P1, and P2 respectively. Then, we claim that shifting (x1, y1) and (x2, y2)
relative to (x0, y0) or by subtracting x0 from the x coordinate and subtracting
y0 from the y coordinate will not alter their labels.
Proof. If we take (x1, y1) and subtract by x0 and y0, then we get the point
(x1−x0, y1−y0). Then, we need to show that this new point also has the label P1.
In order to do so, we can just consider |x1 − x0|′2. We know that |x0|′2 < 1, and
that |x1|′2 ≥ 1, thus because the p-adic absolute value is non-archimedean, we
know that |−x0|′2 = |x0|′2 < |x1|′2, so we can conclude that |x1−x0|′2 = |x1|′2 ≥ 1.
Similarly, we can conclude that |y1 − y0|′2 = |y1|′2 or |y1 − y0|′2 = |y0|′2, but
|y0|′2 < 1 ≤ |x1|′2 and |y1|′2 ≤ |x1|′2, thus |y1 − y0|′2 ≤ |x1 − x0|′2 so the point
(x1 − x0, y1 − y0) has the label P1.

Now, we can do the same to show that if we take the point (x2, y2) and
subtract it by x0 and y0, then the resulting point (x2−x0, y2−y0) must also be
in P2. |y2|′2 ≥ 1 > |y0|′2 = | − y0|′2. Therefore by the non-archimedean property,
we must have |y2 − y0|′2 = |y2|′2 ≥ 1. Similarly, we must have |x2 − x0|′2 = |x2|′2
or x2 − x0|′2 = | − x0|′2 = |x0|′2. However, we have that |x0|′2 < 1 ≤ |y2|′2 and
|x2|′2 < |y2|′2, thus we have |x2−x0|′2 < |y2− y0|′2, so the point (x2−x0, y2− y0)
has the label P2.

Therefore, we have proven Proposition 2.3 and we now know that we can
translate a complete triangle by its P0 point, which shifts the triangle such that
the P0 point goes onto the origin, and we know that the remaining two points
still have the same label.

Now, we wish to find the area of some complete triangle.
Lemma 2.4 Let area of a complete triangle be S. Then we claim that

|S|′2 > 1

Proof. If this triangles has vertices with the labels of P0, P1, and P2 in some
order, then we first shift the triangle such that the point with label P0 becomes
the origin using Proposition 2.3. Now, the other two points still have labels P1
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and P2 according to Proposition 1. Let the point with label P1 have coordinates
(x1, y1) and the point with label P2 have coordinates (x2, y2). Then, by the
Shoelace Theorem, we can find the area of this triangle to be

S =
|x1y2 − x2y1|

2

First notice that whether or not this is positive or negative does not affect
the 2-adic absolute value of S, so we can first ignore the absolute value. Then,
if we consider this value 2-adically, we get the following:

|S|′2 = |x1y2 − x2y1
2

|′2

|x1y2 − x2y1
2

|′2 = |1
2
|′2 · |x1y2 − x2y1|′2

Now, we can compare the values of |x1y2|′2 and |x2y1|′2. By the definition
of the labelling, we have that |x1|′2 ≥ |y1|′2, as well as |y2|′2 > |x2|′2. Therefore,
we know that |x1y2|′2 = |x1|′2 · |y2|′2 > |y1|′2 · |x2|′2 = |x2y1|′2 = | − x2y1|′2.
Thus, by the non-archimedean property of 2-adic absolute value, we know that
|x1y2−x2y1|′2 = |x1y2|′2. Moreover, by the definition of the labeling we also know
that |x1|′2 ≥ 1 and |y2|′2 ≥ 1, thus |x1y2|′2 ≥ 1. Therefore, |S|′2 = |x1y2−x2y1

2 |′2 =
| 12 |

′
2 · |x1y2 − x2y1|′2 ≥ | 12 |

′
2 = 2 > 1.

In conclusion, we know that the area of a complete triangle must be at least
2 (or greater than 1), 2-adically.

Now, we can prove Monsky’s Theorem.

3 Monsky’s Theorem

Proof. First, for any square in the plane, we can translate and dilate it such
that it is a unit square, and has vertices at points (0, 0), (1, 0), (0, 1), and
(1, 1). Then, after shifting we can label each point in R2 according to the 2-adic
absolute value of its coordinates according to the following labelling:

• P0 := (x, y) : |x|′2 < 1, |y|′2 < 1

• P1 := (x, y) : |x|′2 ≥ 1, |x|′2 ≥ |y|′2

• P2 := (x, y) : |y|′2 ≥ 1, |y|′2 > |x|′2

(the same labelling is the same labelling we used earlier in the paper.)

Now, note that v2(0) = ∞, therefore |0|′2 = p−∞ = 0. Thus, the point (0, 0)
will have label P0, point (1, 0) will have label P1, point (0, 1) will have label P2,
point (1, 1) will have label P1.

Now, we can consider where the complete edges on the boundary are. As
complete edges are edges with endpoints P0 and P1, we can disregard points
on the edge from (0, 0) to (0, 1), as the x coordinate is always 0, therefore the
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2-adic labelling will never include points P1. Similarly, the edge from (1, 0) to
(1, 1) will never contain points with label P0 as the x coordinate is always 1,
which is exactly 1 in the 2-adic absolute value, and in order for it to be labelled
P0, |x|′2 < 1, |x|′2 ̸= 1. Finally, the edge from (0, 1) to (1, 1) will never contain
points with label P0 either since its y-coordinate is always 1, meaning that the
2-adic absolute value will be exactly 1.

Therefore, we know that the only possible complete edges on the boundary
must exist only from (0, 0) to (1, 0). Moreover, we claim that there is an odd
number of complete edges. First, we can show that there will never be a P2

point on the edge from (0, 0) to (1, 0). Clearly this is true as the y-coordinate
is always 0, and |0|′2 = 0 < 1. Then, we know that on the edge from (0, 0) to
(1, 0) there are only P0 and P1 points. Now, we can prove that there is an odd
number of complete edges by strong induction.

Lemma 3.1 Consider n points on the edge from (0, 0) to (1, 0) including its
endpoints, such that n ≥ 2 and each point is either a P0 point or a P1 point.
We claim that there is an odd number of complete edges.
Proof. The base case is where there is only two points, in our case the two
vertices (0, 0) and (1, 0). This clearly has an odd number of complete edges.
Now, consider n points on this edge. If we assume that the statement is true
for 2 through n− 1 points, and they all have an odd number of complete edges,
then we can show that n points must also have an odd number of complete
edges. As we are looking at n ≥ 3 (not the base case), we can consider some
point X in the middle of the edge (not (0, 0) or (1, 0)). Then, this point could
either be a P0 or a P1 point. First, let us deal with the case when X is a P0

point. Now, we consider the two points closest to X on each side (one closest
on the left, one closest one the right), and then consider what happens to the
number of complete edges when we include or exclude X.

• Case 1: Both points have label P0. In this case, without adding the
point X the two adjacent P0 points contributed 0 complete edges to the
total. When we add back the point X, There are 3 P0 points, which still
contributes 0 complete edges. Therefore the parity remains the same.

• Case 2: Both points have label P1. In this case, when we consider the point
X in between, there are 2 complete edges. However, when we remove X,
there is two adjacent P1 points, so there are 0 complete edges. Therefore,
in this case the parity of the number of complete edges remains the same.

• Case 3: One point has label P1 and the other has label P0. In this case,
when we consider the point X in the middle, it will split the segment into
a P1P1 and a P1P0 (or P0P1), therefore X contributes one complete edge.
However, when we remove X, there is also exactly one complete edge
created by the two points surrounding X, so the parity of the number of
complete edges remains the same.

Notice that when counting the parity, we only need to consider the two
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points surrounding X as other points will not be relevant to a complete edge as
only adjacent points have edges connecting them on the boundary.

Now, we can repeat the same casework except we consider when X is a P1

point this time. Similar to above, the parity of complete edges never changes.
Therefore, the parity is the same as the base case, which is odd.

Now, by Sperner’s lemma, we know that the number of complete triangles
inside of the dissection of the square must also be odd, which implies that there
must at least be one complete triangle in the dissection.

However, by Lemma 2.4, we know that the 2-adic absolute value of the area
of a complete triangle must be greater than 1. Therefore, if we let the area
of each triangle in the equal dissection of the square be s, and the number of
triangles be m, then ms = 1. Now, if we consider this with the 2-adic absolute
value, we know that

|ms|′2 = |1|′2 = 1

|m|′2 · |s|′2 = 1

Lemma 2.4 states that |s|′2 > 1, therefore |m|′2 < 1 as the product is 1 and
the 2-adic absolute value is multiplicative. As m is an integer (the number of
triangles in the dissection), and its 2-adic absolute value is less than 1, this
means that m must be even. Therefore, we have proved Monsky’s Theorem,
that any dissection of a square into triangles of equal area must have an even
number of triangles.

4 Applications

Monsky’s theorem can be generalized to the study of balanced polygons, a key
topic in tropical geometry, a variant of algebraic geometry.

Definition 3.1: Let B be a plane polygon with clockwise oriented boundary.B
is called balanced if its edges can be divided into pairs so that in each pair,
edges are parallel equal in length, and have opposite orientation (the edges are
oriented, there orientation comes from the orientation of the boundary)

This introduces the Stein conjecture.

Corollary (S.Stein, 2000). A balanced polygon cannot be cut into an odd num-
ber of triangles of equal areas.

Theorem 4.1 (Non-equidessectibility of a balanced lattice polygon). Consider
a balanced polygon B of the integer odd area and assume that the coordinates of
all the vertices are integer numbers. Then B cannot be cut into an odd number
of triangles of equal area.

Monsky’s theorem has inspired similar theorems to be made which also are
generalizations of the p-adic absolute value and Sperner’s Lemma.
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1. Partitioning the n-dimensional cube into simplices yields that the number
of simplices must be a multiple of n!.

2. Partitioning regular n-gons for n > 4 implies that the number of triangles
is divisible by n.

3. Monsky also showed that for a centrally symmetric polygon, the answer
is the same as that for a square.

4. There are some polygons that cannot be dissected into triangles of equal
areas. An example is the trapezoid with vertices (0, 0), (0, 1), (1, 0), (a, 1),
where a is not algebraic.
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