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Abstract

This paper discusses the construction of the Bruhat-Tits Tree. This is a tree whose vertices classify
lattices in Q2

p, we compare it with lattices in R2 which are in bijection with the upper half-plane
modulo the group PSL 2(Z).
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1 Introduction

The Bruhat–Tits tree’s vertices classify lattices in Q2
p. It is an interesting analog of lattices in

R2, which are in bijection with the upper half-plane modulo the group PSL2(Z).

Figure 1. Bruhat-Tits Tree in Q2

One of it’s more intriguing implications include a mathematical proof of the AdS/CFT cor-
respondence. Using the tensor network living on the Bruhat-Tits tree one can give a concrete
realization of the recently proposed p-adic AdS/CFT correspondence (a holographic duality based
on the p-adic number field Qp). Instead of assuming the p-adic AdS/CFT correspondence, it can
be shown how important features of AdS/CFT such as the bulk operator reconstruction and the
holographic computation of boundary correlators are automatically implemented in this tensor
network. This is a good (although somewhat long) resource to go on the same through after
completing this paper. Url: https://arxiv.org/pdf/1703.05445.pdf.
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2 Preliminary Information

Definition 2.1 (General Linear Group). A map f from Rm to Rn is called linear if it maps a
linear combination of vectors to the same linear combination of the images; that is

(u, v ∈ Rm)(λ, µ ∈ R) ⇒ f(λu+ µv) ∈ Rn ⇒ λf(u) + uf(v) ∈ Rn.

by fixing a basis {b1, b2, . . . , bn} of the vector space Rn, we can describe the effect of such a
map by its matrix. Mf = (aij) where f maps the ith basis element bi to ai1b1+ai2b2+ . . .+ainbn.
Such a transformation is a bijection if it has an inverse map f−1 or equivalently if the determinant
of its matrix is non-zero.

The set of all such invertible linear transformations from Rn to itself is called the General
linear group. Denoted by GLn(R).

Definition 2.2 (Special Linear Group). The set of all invertible transformations (or equivalently
of invertible matrices) with determinant 1 is then a subgroup of GLn(R) called the Special Linear
group and denoted by SLn(R).

Definition 2.3 (Projective Spaces). We need to set up a geometry on a space different from Rn.
Taking the correspondence between points on two lines from a point P ’s projection not on either
line. This is not bijective. A line from P parallel to the line m does not meet m and so no point
on m corresponds to the point x on l. Similarly no point on l corresponds to the point y on m.
To fix this we add a point at infinity to each line. Then lim

x→∞
m and lim

y→∞
l. The space we get in

this way consisting of the ordinary affine line R and this extra point is called the Real projective
line and is written RP 1.

Similarly we can set up a correspondence between the points of two planes π1 and π2. This
time we add a line at infinity to each plane to make the correspondence into a bijection. This gives
us a space consisting of the ordinary affine plane R2 together with this extra (projective) line at
infinity which is called the Real projective plane and is written RP 2.

Definition 2.4 (Projective Group). If F is any field, the quotient group GLn(F )\{λI|λ ∈ F \{0}}
is called the projective group and is written PGLn(F ).

Definition 2.5 (Projective Linear Group). It is the induced action of the general linear group of
a vector space V on the associated projective space P (V ); it is the quotient group: PGL(V ) =
GL(V )/Z(V ). Where GL(V ) is the general linear group of V and Z(V ) is the subgroup of all
nonzero scalar transformations of V ; these are quotiented out because they act trivially on the
projective space and they form the kernel of the action, and the notation “Z” reflects that the
scalar transformations form the center of the general linear group.

It is also referred to as the Projective General Linear Group.

Definition 2.6. A partially ordered set in which every pair of elements has a unique supremum
(also called a least upper bound or join) and a unique infimum (also called a greatest lower bound
or meet) is called a lattice.

An example is given by the power set of a set, partially ordered by inclusion, for which the
supremum is the union and the infimum is the intersection.

Definition 2.7 (Non-Archimedean Metrics). A metric induced by a non-Archimedean norm is a
non-Archimedean metric.

A non-Archimedean norm: ||x+ y|| ≤ max(||x||, ||y||)(∀x, y).
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A non-Archimedean metric
(general): d(x, y) ≤ max(d(x, z), d(z, y))(∀x, y, z).
(for the mentioned norm): d(x, y) = ||x− y|| = ||(x− z) + (z− y)|| ≤ max(||x− z||, ||z− y||) =

max(d(x, z), d(z, y)).

Remark 2.8. Essentially, a non-Archimedean metric can be viewed as a metric induced by any
absolute value that satisfies the ultrametric inequality.

Definition 2.9 (Algebraic Variety). Algebraic Variety is the set of solutions of a system of
polynomial equations over the real or complex numbers.

Definition 2.10 (Generic Fiber). In algebraic geometry, a generic fiber or generic point P
of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a
generic property being a property which is true for almost every point.

This paper also makes use of several abbreviations, here is a table for your reference.

Symbol Usage

Z integers
Q rational numbers
R real numbers
C complex numbers
| · |p the p-adic absolute value.
Qp the p-adic numbers
P projective spaces
F finite ields
iff if and only if
ord the order of a modulo n
red reduction map
Spf formal spectrum

3 Lattices and Planes

3.1 Lattices in R2

A lattice follows the following properties in Rn:

1. It is a discrete additive subgroup of Rn.

2. It is closed under addition and subtraction.

3. There exists a ϵ > 0, such that any two distinct points in said lattice (x ̸= y) at at least
||x− y|| ≥ ϵ away from each other.

The simplest lattice in Rn is the set of all n-dimensional vectors with integer entries, i.e, Zn.
Integers can be added (and subtracted), and are at least ϵ = 1 away from each other.

Other lattices can be easily obtained from Zn by applying a (non-singular) linear transforma-
tion.

For instance, if B ∈ Rk xn has full column rank1, then B(Zn) = {Bx : x ∈ Zn} is also a lattice.

1The columns of B are linearly independent
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This set is closed under addition and subtraction. Additionally, if B = [b1, . . . , bk] ∈ Rn×k are
linearly independent vectors in Rn, then any point y ∈ span(B) can be written as a unique linear
combination y = x1b1 + . . .+ xnbn. Therefore, y ∈ L(B) iff {x1, . . . , xn} ⊆ Z. Hence, the set B is
also discrete.

Furthermore all lattices can be expressed as B(Zn) for some B, so an equivalent definition of
lattice is the following.

Definition 3.1. Let B = [b1, . . . , bk] ∈ Rn×k be linearly independent vectors in Rn. The lattice
generated by B is the set

L(B) = {Bx : x ∈ Zk} =

{ k∑
i=1

xi · bi : xi ∈ Z
}

of all the integer linear combinations of the columns of B. The matrix B is called a basis for
the lattice L(B). The integers n and k are called the dimension and rank of the lattice respectively.
And if n = k then L(B) is called a full rank lattice.

3.2 The Upper Half-Plane

Definition 3.2. The Upper Half-Plane {H} is the set of points (x, y) in the Cartesian plane
with y > 0. It is also known as the Poincaré half-plane model, andH = {⟨x, y⟩|y > 0;x, y ∈ R}.

Figure 2. The Poincaré half plane model.

The metric of the model on the the half plane, {⟨x, y⟩|y > 0} is :

(ds)2 =
(dx)2 + (dy)2

y2

where s measures the length along a (possibly curved) line.

Remark 3.3. ds measures the distance ‘travelled’ on the x-axis for a very small (almost negligible)
change in y. We are essentially taking the derivative of the distance, on the other hand, if one
wanted to calculate the entire distance they would integrate this.

On this plane, PSL2(Z) acts bijectively maps the projectively extended rational line (the ra-
tionals with infinity) to itself, the irrationals to the irrationals, the transcendental numbers to the
transcendental numbers, i.e. the upper half-plane to the upper half-plane.
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3.3 Trees

Definition 3.4. In discrete mathematics, a graph refers to a structure amounting to a set of
objects in which some pairs of the objects are in some sense “related”. These objects correspond
to mathematical abstractions called vertices, nodes or points. Each of the related pairs of vertices
is called an edge.

There are several types of graphs; two major ones are cycle graphs and acyclic graphs.

Definition 3.5. Cycle graphs are connected graphs of the order n ≥ 3, whose vertices can be
denoted as v1, v2, . . . , vn, such that the edges are {vi, vi+1} ( where i = {1, 2, . . . , n − 1} ) and
{vn, v1}.

Where as acyclic graphs are graphs which have no cycles. A tree is a type of acyclic graphs.

Definition 3.6. A tree can be defined as a connected acyclic undirected graph. That is to say,
a tree is a non-empty finite set of elements called vertices or nodes having the property that each
node can have minimum degree 1 and maximum degree n.

Trees are often described as “visualization alternative to large cluttered concept lattices, which
preserves all lattice entities and some of its structure.” We will futher build on this idea with
respect to the Bruhat-Tits Tree in the next sections.

3.4 Lattices in Q2
p

Definition 3.7. We call a subset L ⊆ Q2
p a lattice if L is a rank 2 free Zp-module of Q2

p.
Equivalently L is a lattice of Q2

p if there exist 2 independent vectors v1, v2 ∈ Q2
p such that

L = Zpv1 + Zpv2

L = {xv1 + yv2|x, y ∈ Zp}.

Example. Lattices in Q2
p are :

L0 = Z2 = Zp(1, 0) + Z(0, 1) and L = Zp(p
a, 0) + Z(0, pb), a, b ∈ Z

4 The Bruhat-Tits Tree

The Bruhat-Tits Tree is the combinatoric p-adic analog of the real half plane equipped with
the natural action by PSL2(Z). Its vertices correspond to {Zp − lattices ⊇ V0 = Q2

p} modulo Qx
p

scaling. Two lattices L1,L2 form an edge iff after scaling L1,L2, the relation pL1 ⊈ L2 ⊈ L1 holds.
We formally define a Bruhat-Tits Tree as follows,

Definition 4.1. The Bruhat-Tits tree is the graph T , with vertices [L], where [L] is the equivalent
class of some lattice L of Q2

p. There is an edge between two vertices v1 and v2 of T if and only if

(∃Ls.tv1 = [L]

(∃L′s.tv2 = [L′]

and

L ⊇ L′ ⊂ pL
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Figure 3. The Bruhat-Tits tree of SL(2)

We define the equivalence relation on the set of lattices of Qp such that
L ∼ L′ ⇐⇒ L′ = λL for some λ ∈ Qx

p.

Remark 4.2. L ⊇ L′ ⊂ pL implies L′ ⊇ L ⊂ pL′, hence T is a undirected graph.

4.1 Constructing the Bruhat-Tits Tree in Qp

Fix a 2-dimensionaal Qp-vector space V0
∼= Q2

p, and Ω = P(V0) − P(V0)(Qp) ∼= P1
Qp − P1(Qp)

with the action of GL(V0) ∼= GL2(Qp). For any lattice L in V0, the generic fiber of P(L) is identified
with P(V0).

Choose an basis (e1, e2) of L, then we can identify P(L) with P1
Zp, and P(V0)(Cp)

L∼= P1(OCp).

Consider, Ω̂L such that (P(L)− P1(Fp))
∨ over Spf Z− p, where (−)∨ means completion along

the ideal (p). Its rigid generic fiber ΩL over Qp is an open rigid sub-variety of Ω, with Cp-points.

ΩL(Cp) = Ω̂L(OCp) = lim
n

Ω̂L(OCp \ {pn}) = P1(Cp)− red−1(P1(Fp)) ⊆ Ω(Cp).

Where, red is the reduction map P1(Cp)L ∼= P1(OCp) → P1(F̄p).
So ΩL is a complement of finitely many open discs in P(V0).
More concretely, the basis (e1, e2) provides a pair of coordinates [X1, X2] on P(V0) i.e two

sections of O(1) that generates the line bundle O(1). Let T = X1 \X2 be the rational function on
P(V0) and its restriction on D(X2) = P(V0)− [0, 1] to be z, then we have

Ω̂L ∼= SpfZp[T, (T
p − T )−1]∨

ΩL(Cp) = {z ∈ Cp : |z| = 1} − {z ∈ Cp : |z − a| < 1, for some a ∈ Zp}.

It is then easy to see that for z ∈ ΩL(Cp), |az + b| = max{|a|, |b|} for any a, b ∈ Qp.

So ΩL(Cp) is GL(L)
e1,e2∼= GL2(Zp)-invariant.

Remark 4.3. We know by general construction that gΩL = ΩgL for any g ∈ GL(V0). Notice that
GL(V0) acts transitively on all lattices, so we fix one lattice M0 = Zpe01

⊕
Zpe02 ⊆ V0 as the

standard lattice, and let [M0M1] be the standard edge where M1 = Zpe01
⊕

Zppe02.
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Proposition 4.4. If [L1] ̸= [L2] ∈ BT0, then ΩL1 doesn’t intersect with ΩL2. Moreover,⋃
[L]∈BT0

ΩL(Cp) =
⋃

g∈GL2(Qp)

gΩM0(Cp)

doesn’t cover Ω(Cp).

Proof. Ω(Cp) can be identified with the collection of C×-homothety classes of injective Qp-linear
maps of V0 into Cp.

z ∈ ΩL(Cp) corresponds to the map f : V0 → Cp such that f(e1) = z , f(e2) = 1 . As
|az+ b| = max{|a|, |b|} for any a, b ∈ Qp, we see f

−1(OCp) = L. This shows two different ΩL don’t
intersect. We have:

g =

(
a b
c d

)
∈ GL2(Qp)

and z ∈ ΩM0(Cp), gz =
az + b

cz + d
, |gz| = |az + b|

|cz + d|
=

max{|a|+ |b|}
max{|c|+ |d|}

∈ Q. So any z ∈ Cp with |z| ̸= Q

is not in
⋃

[L]∈BT0
ΩL(Cp).

What’s missing in the generic fiber can be seen below. Under the standard basis e01, e02,

ΩM0(Cp) = {z ∈ Cp : |z| = 1} −
⋃
a∈Zp

{z ∈ Cp : |z − a| < 1},

ΩM1(Cp) = {z ∈ Cp : |z| = p−1} −
⋃

a∈pZp

{z ∈ Cp : |z − a| < p−1}.

So if we define

ΩM0M1(Cp) = {z ∈ Cp : p
−1 ≤ |z| ≤ 1}−

⋃
a∈pZp−pZp

{z ∈ Cp : |z−a| < 1}−{z ∈ Cp : |z−a| < p−1}.

It will contain ΩM0(Cp) and ΩM1(Cp) and fill the “gap” between them naturally.
We must now formally define ΩM0M1 .

Definition 4.5. For any edge [L1L2] ∈ BT1, let PL1L2 be the blow up of P(L1) at the Fp-point
ptL1L2 = L2/pL1 ∈ PL1(Fp), which is equal to the blow up of P(L2) at the Fp-point pL1/pL2. Its
generic fiber is identified with P(V ), and it special fiber has an unique singular point (still denoted
by ptL1L1.

We define Ω̂L1L2 as the formal scheme (PL1L2 − (PL1L2(Fp) − ptL1L2))
∨, and its rigid generic

fiber over Qp by ΩL1L2

Proposition 4.6.

Ω̂M0M1 = Spf(Zp[T0, T1, (T
p−1
0 − 1)−1, (T p−1

1 − 1)−1]/(T0T1 − p))∨

where T0 = X2/X1, T1 = pX1/X2. The embedding Ω̂M0 ↪→ Ω̂M0M1 sends T0 to T−1, and T1 to
pT0. In particular T1 vanishes on Ω̂M0,s. The embedding Ω̂M1 ↪→ Ω̂M0M1 sends T0 to pT−1, and

T1 to T . T0 vanishes on Ω̂M1,s.
It’s not hard to show ΩM0M1(Cp) agrees with the first definition by hand, and all ΩL1L2 cover

Ω. Just as {z ∈ C∞ : |z| > 1, |Re(z)| ≤ 1/2} gives a fundamental domain of H∞ for the
action of GL2(Z), one can think ΩM0M1 as a fundamental domain of the p-adic half plane for
GL2(Zp)xdiag{Q×

p , 1}.
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Remark 4.7. For latter consideration of intersection theory, it’s better to base change and assume
the residue field is algebraically closed. We denote W = W (F̄p) to be the ring of Witt vectors of
F̄p.

Theorem 4.8. There is a natural regular 2-dimensional formal model Ω̂ over Spf Zp of Ω, inher-
iting the action of GL(V0) ∼= GL2(Qp). Moreover,

1. Its special fiber Ωs is reduced, and is a union of projective lines PL indexed by vertices of BT .
PL1 and PL2 intersects iff L1, L2 form an edge, in which case they intersect transversally at
the Fp-point ptL1L2 = L2/pL1 ∈ PL1(Fp).

2. Ω → Spf Zp is of strictly semi-stable reduction. In particular, for any point x ∈ |ΩW | =
|ΩW,s|, if x in the intersection of two PL, the completed local ring Ox is isomorphic to
W [[T0, T1]] \ (T0T1 − p); if x is in PL − PL(Fp) for some L, then Ox

∼= W [[T ]];x is called a
superspecial point and a ordinary point respectively.

3. If x = ptL1L2 is a superspecial point, then Ω̂L1L2 is an affinoid open neighborhood of x; If
x ∈ PL is an ordinary point, then Ω̂L is an affinoid open neighborhood of x.

4. The action of GL2(Qp) is compatible with the action of GL2(Qp) on BT . In particular,
gPL = PgL.

Proof. Glue Ω̂L1L2 along Ω̂L, and note the Bruhat-Tits tree is connected so they glue together to

Ω̂.

5 Conclusions and Moving Futher

Hence, we can see how the Bruhat-Tits Tree is the p-adic analog of lattices in R2, which are in
bijection with the upper half-plane modulo the group PSL2(Z). As interesting as this was, the Tree
in itself has several baffling implications in p-adic string theory (the AdS/CFT correspondence to
be specific).

One could also go on to explore the theory of building, which has important applications in
several rather disparate fields. It is related to the the structure of reductive algebraic groups
over general and local fields, and is used to study their representations. The results of Tits on
determination of a group by its building have deep connections with rigidity theorems of George
Mostow and Grigory Margulis, and with Margulis arithmeticity.

Special types of buildings are studied in discrete mathematics, and the idea of a geometric
approach to characterizing simple groups proved very fruitful in the classification of finite simple
groups. The theory of buildings of type more general than spherical or affine is still relatively
undeveloped, but these generalized buildings have already found applications to construction of
Kac–Moody groups in algebra, and to nonpositively curved manifolds and hyperbolic groups in
topology and geometric group theory.
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