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Abstract. We analyze the properties of the p adic solenoid Sp, a mathematical object that
connects R and Qp as a topological group. To do this, we look at Sp through the lenses of
algebra and algebraic topology.
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1. Introduction

In p-adic analysis, one learns about the structure of Zp as an inverse limit, and building
additional structures off of it such as Qp and Cp. However, not much is known about Sp even
though it can be constructed in a similar way.

It is not an unknown structure, however. Indeed, the work of Alain Robert [Rob13] in
his book A Course in p-adic Analysis provides one of the largest expositions on the p-adic
solenoid that is currently known. On the other hand, there are gaps in the understanding of
Sp; Hofmann and Morris’ book [HM06] The Structure of Compact Groups provides an inside
look into the inner workings of Pontryagin Duality Theory and its ties to the character group
of the solenoid.
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What makes the p-adic solenod an important thing to note is its intimate relationship
with the circle group; indeed, we will see later in this paper of how Sp can be expressed as
an inverse limit of circle groups, similarly to how Zp can be described as an inverse limit of
the integers modulo pn. Using circle groups in our construction allows for some convenient
results with compactness and other theory developed in algebraic topology.

Ultimately, though, this approach is rather restrictive. It is more fulfilling from a visual
perspective to see how Sp looks in three dimensions. Indeed, one can theoretically embed
Sp into R3 in a certain why through wrappings around multiple tori. We propose one such
construction for the curious.

Additionally, we also present the unorthodox construction of Sp as a quotient. While
relatively unimportant in the general scheme of things p-adically, it is an alternative view of
the solenoid that certainly should not be overlooked.

An important question is where exactly Sp fits in the p-adic mix. After all, we are familiar
with objects such as Zp, Qp, Cp and even Ωp, but how smaller or larger is Sp relative to
any of those? We answer this question through the discussions of the subgroups of Sp. In
particular, we show that Sp contains both Qp and Zp.
As one does for Zp and Qp, we do not leave the topology of Sp unscathed. We show that

it is both connected and compact, which follows rather easily from the formalism that we
develop with inverse limits. Through this, some additional results follow immediately from
point set topology, such as sequential and limit point compactness.

To discuss Pontryagin Duality Theory, one must develop some more theory. Due to the as-
sumption of the reader’s ability, we develop some basic theory on abelian groups, topological
groups, and character groups. This is not all in vain, however; we use these prerequisites to
connect all of the theory presented together into one idea: showing that Sp and its character
group Z[1/p] exhibit Pontryagin Duality. This is not a special property of the solenoid, how-
ever. The abelian group Zp and its character group Z(p∞) also exhibit Pontryagin Duality.

This work is inspired by both Hofmann and Morris’ book, as well as the works of Robert.
This expository primarily relies on their results. Our central aim is to provide a thorough
exposition of Sp, and combine all known knowledge as cohesively as possible. The authors
of this work hope that this is as exhaustive as it can be.

2. Inverse Systems

The structure of Sp is based off of a very familiar mathematical object: the inverse system.
Here, one defines the idea of a “limit” in an algebraic sense. While this is something usually
reserved for analysis, we propose how to rigorously define this here based off of the exposition
of Robert [Rob13].

2.1. Definition of Inverse System. In order to fully understand the construction of Sp in
an algebraic setting, we need to define the notion of an inverse (also known as “projective”)
system.

Definition 2.1. A sequence (Xn, φn)n≥0 of sets Xn and transition maps φn : Xn+1 → Xn is
called an inverse system. A set X with maps ψn : X → Xn such that ψn = φn ◦ ψn+1 for
n ≥ 0 is called the inverse limit (X,ψn) of the inverse system (Xn, φn)n≥0 if the following
condition holds: for each set A and mappings fn : A→ Xn satisfying fn = φn ◦ fn+1, there
is some unique factorization f of fn such that for n ≥ 0,

fn = ψn ◦ f : A→ X → Xn.
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This inverse limit (X,ψn) is denoted as X = lim
←−

Xn. (See Figure 1). When the mappings

in the inverse system are surjective we say that it is strict and that the inverse limit is the
strict inverse limit.

Remark 2.2. Definition 2.1 can be broken down significantly for clarification. Notice that
there is a iterative behavior with fn, or that

fn = φn ◦ fn+1

= φn ◦ (φn+1 ◦ fn+2)

...

= (φn ◦ φn+1 ◦ . . . ◦ φn+k) ◦ fn+k+1

which is just equivalent to ψn ◦ f . So, by definition f is seen as a limit of each fi as i→∞
and ψn is seen as a limit of the composition of the transition mappings φn. This can all be
seen in the following diagram.

A

f
��

fn+1

ss
fn

rr· · · Xnφn−1

oo Xn+1φn

oo · · ·φn+1

oo lim
←−

Xn
oo

ψn

oo

Figure 1. An inverse system (Xn, φn)n≥0 together with its inverse limit
(X,φn).

In addition, the “factorization” condition in Definition 2.1 is what is called a univer-
sal property ; that is, inverse limits do not depend on the initial terms in the sequence of
mappings; also notice that the universal property is responsible for making the diagram in
Figure 1 commute. But to remove the ambiguity of this abstraction, we resort to an example.

2.2. A Familiar Example. While usually discussed in a p-adic analysis course, one com-
mon example of an inverse system equipped with an inverse limit should be very familiar.
The inverse system (Z/pnZ, φn)n≥0 with transition maps (homomorphisms) φn : Z/pn+1Z→
Z/pnZ forms the inverse limit Zp = lim

←−
Z/pnZ, called the p-adic integers. (See Figure 2).

Zp
f
��

fn+1

ss
fn

rr· · · Z/pnZφn−1

oo Z/pn+1Zφn

oo · · ·φn+1

oo lim
←−

Z/pnZoo

ψn

oo

Figure 2. Diagram of (Z/pnZ, φn)n≥0. Visual depiction of Zp = lim
←−

Z/pnZ.
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While this definition makes sense abstractly, one should informally think of Zp as having
an almost “fractal-like” behavior, with each iteration being a new congruence class modulo
pn. Indeed, this behavior is similar in nature to the inverse system, of which can be seen
directly from definition.

2.3. A Question of Existence. A question that is typically asked in analysis is whether a
limit exists in the formal sense. Given our higher levels of abstraction in the inverse system,
one should certainly have this worry. The following theorem is meant to qualm any worries
the reader may have pertaining to this issue.

Theorem 2.3. For every inverse system (Xn, φn)n≥0 there exists an inverse limit

X = lim
←−

Xn ⊂
∏
n≥0

Xn

which is unique up to bijection.

Proof. We will first prove existence. Instead of defining X the way we previously did, let

X = {(xn)n≥0 : xn ∈ Xn and φn(xn+1) = xn for n ≥ 0}

which obviously forms a subset of the product of each Xi. Let ϵn : X → Xn. If x ∈ X, then
φn(ϵn+1(x)) = ϵn(x) so if we restrict ϵn so that we have ψn map to X we have φn ◦ψn+1 = ψn
as usual. Hence, the maps ψn and the set X can be viewed as an upper bound of the sequence
(Xn) with respect to the transition maps φn. To finish the proof of existence, it remains to
verify the universal property. Consider the mapping ψ′n : X ′ → Xn, where φn ◦ ψ′n+1 = ψ′n.
We claim that there is a unique factorization of ψ′n by ψn. Observe that

(ψ)′n : X ′ →
∏
n≥0

Xn

and for each u ∈ X ′ the mapping u 7→ (ψ′n(u)) holds. Because φn(ψ
′
n+1(u)) = ψ′n+1(u) the

map (ψ′n) is contained in a subset of X. Hence there is a map

f : X ′ → X ⊂
∏
n≥0

Xn

such that ψ′n = ψn ◦ f . This proves existence; now we prove uniqueness. Suppose that
(X,ψn) and (X ′, ψ′n) both exist and satisfy the universal factorization property. Then there
is a map f : X → X ′ with ψn = ψ′n ◦ f ′ and ψ′n = ψn ◦ f . Substituting the second into the
first gives

ψn = (ψ′n ◦ f ′) ◦ f = ψ′n ◦ f ′ ◦ f = ψ′n

so uniqueness holds as well. This completes our work. ■

2.4. The Topology of the Inverse System. More depth in this subject occurs when one
considers the possibility of (Xn, φn)n≥0 being a topological space with continuous maps φn.
By our previous construction, this means that (X,ψn) = X = lim

←−
Xn forms a topological

space as well, with mappings ψn : X → Xn that are also continuous. We prove the following
important result.

Theorem 2.4. An inverse limit of compact nonempty spaces is also nonempty and compact.
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Proof. Let (Kn, φn)n≥0 be an inverse system composed of compact spaces. By Tychonoff’s
theorem, the product ∏

n≥0

Kn = K0 ×K1 × . . .

is compact. Since the inverse limit K is contained in the above product, it follows that K
is compact, as any closed subspace of a compact space is compact. Now we prove that K is
nonempty. It suffices to show that all φn’s are surjective. Define the chain of spaces

K ′n = φn(Kn+1) ⊃ K ′′n = φn(φn+1(Kn+2)) = φn(K
′
n+1) ⊃ . . .

which are all compact and nonempty. Their intersection

Ln =
⋂
k≥0

K(k)
n

is nonempty in Kn. We see that φn(Ln+1) = Ln and the restriction of φn to Ln leads to an
inverse system with surjective transition mappings, completing the proof. ■

It follows from this theorem that the inverse limit of nonempty (finite) sets is nonempty.
The condition that these sets be compact is just additional for larger results. But while on
the topic of topological spaces, the subject of bases arises rather quickly.

Theorem 2.5. Let X be an inverse limit of topological spaces Xn. The basis of the topology
is furnished by the sets ψ−1n (On) for n ≥ 0 and arbitrary open sets On ⊂ Xn.

Proof. Similar to before, define x = (xi) to be a sequence within the inverse limit X where

X = {(xn) : φn(xn+1) = xn for n ≥ 0}.
We show that each On with x ∈ On forms a basis of neighborhoods. Let On ⊂ Xn and
On−1 ⊂ Xn−1. Since it is assumed that xn ∈ On and xn−1 ∈ On−1 we have ψn(x) = xn where
xn ∈ On ∩φ−1n−1(On−1). This implies that x ∈ ψ−1n (On). Using the principle of mathematical
induction, we see that we can show that an open set in∏

N≥n

On ×
∏
n>N

Xn

has an intersection with the inverse limit of the form ψ−1N (ON) for some open set ON ⊂
XN . ■

Our final result with inverse systems has to deal with topological closure, specifically the
closure of a subset of the inverse limit.

Theorem 2.6. Let S ⊂ X = lim
←−

Xn of topological spaces Xn. The closure S of S is

S =
⋂
n≥0

ψ−1n (ψn(S)).

Proof. First, we see that S ⊂
⋂
n≥0 ψ

−1
n (ψn(S)), which is closed, so S is within this inter-

section as well. On the other hand, let b be in this intersection. We show that it is also
in S. Let U be some neighborhood of b. From our previous results, we see that we can
assume that U = ψ−1n (On) without loss of generality for some On ⊂ Xn. This means that

ψn(b) ⊂ On trivially. Since b was assumed to be in this intersection, we set b ∈ ψ−1n (ψn(S)).

Taking mappings gives ψn(b) ∈ (ψn(S)). Hence, there is some s ∈ S such that ψn(s) ∈ On.
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This means that we have s ∈ S ∩ ψ−1n (On), showing that the neighborhood of b must meet
S at some point, or that ψn(b) ∈ S. Done. ■

This implies an interesting corollary that we will mention. It has to deal with when a
subset of an inverse limit is dense.

Corollary 2.7. If S is a subset of X = lim
←−

Xn, then S is dense when all ψn(S) are dense.

Despite the relatively heavy amounts of formalism needed to define inverse systems, our
work will soon yield fruit as the reader will soon see as they read on.

3. Topological Groups and Algebra

While we assume that the reader is familiar with the topics of groups, rings, and fields in
the normal sense, deriving topological properties on these objects can prove rather difficult
without defining new objects. This is what we seek to do in this section, in addition to
deriving their properties. However, it begins rather unorthodox. To begin, we present a
special group called the circle group, which will prove vital throughout the rest of this
exposition.

3.1. The Circle Group. We propose the following definition of an important additive
quotient of groups.

Definition 3.1. The circle group T is defined as

T = {z ∈ C | |z| = 1}.

However, we sometimes interchange the notation of T to express another algebraic rela-
tionship going on.

Theorem 3.2. The circle group T ∼= R/Z.

Proof. Take the function φ : R → T via the mapping θ 7→ eiθ = cos(θ) + i sin(θ). To be
clear, this is indeed an additive group homomorphism because

φ(θ1 + θ2) = ei(θ1+θ2)

= eiθ1eiθ2

= φ(θ1)φ(θ2).

The kernel of this homomorphism is 2πZ, and by the First Isomorphism Theorem, we see
that (upon rescaling a little),

R/2πZ ∼= R/Z ∼= φ(R) = T.

This completes the proof of the theorem. ■

Throughout the rest of this text, will will use T and R/Z interchangebly. We hope that
the reader sees the benefit of not committing to one notation.
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3.2. Topological Groups. While we are already familiar with a group G, we can actually
endow this group with a topology to turn it into something rather special.

Definition 3.3. A topological group G is a group endowed with a topology such that the
mappings

φ : G×G→ G, (x, y) 7→ xy

ψ : G→ G, x 7→ x−1

are continuous mappings in G. We say that G is a compact topological group when its
topology is compact Hausdorff, and a locally compact topological group when its topology is
Hausdorff and the identity has a compact neighborhood. Lastly, we say that G is discrete if
its topology is the discrete topology.

From the definitions above, it follows that both compact and discrete topological groups
are also locally compact topological groups. It is relatively trivial to show that a subgroup of
a topological group is also a topological group itself with respect to the subspace topology.

Example. The circle group T is a compact topological group with its usual topology. Any
group G is a topological group with respect to the discrete topology.

It is rather fitting to introduce the mappings of one topological group to another. Not
surprisingly, they behave similarly to mappings among groups in the normal sense.

Definition 3.4. A morphism of topological groups is a continuous mapping φ : G → H
that is also a group homomorphism. It is said to be an isomorphism of topological groups
if it has an inverse morphism of topological groups. We denote this isomorphism as G ∼= H
per usual.

Of course, when studying topological groups we must define actions amongst them.

Definition 3.5. We say that a topological group G acts on a set X if there is a continuous
function ψ : G×X → X by the mapping (g, x) 7→ gx which implements a group action.

Using this language we can construct the quotient of two topological groups.

Definition 3.6. If H ≤ G then the set G/H of cosets gH = {gh | h ∈ H} for each g ∈ G is a
topological space relative to the quotient topology called the quotient space of G modulo H.
If H ⊴ G then G/H with respect to the quotient topology is called the topological quotient
group of G modulo H.

It should not be of any concern to the reader of whether or not there are a finite amount
of compact topological groups. The reason why is because of the following result.

Theorem 3.7. If {Gj}j∈J is an indexed family of compact groups Gj, then the product

G =
∏
j∈J

Gj

with respect to the product topology is also a compact group. Additionally, any closed H ≤ G
is also compact.

Proof. This follows directly from Tychonoff’s Theorem. Indeed, H ≤ G implies the second
claim directly given that G is compact. ■
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We conclude this subsection by observing when isomorphisms between topological groups
occur.

Theorem 3.8. If G is a topological group and H is a Hausdorff topological group, and if f :
G→ H is an injective morphism of topological groups, then the constriction f ′ : G→ f(G)
with f ′(g) = f(g) is an isomorphism.

Proof. Since G is compact and H is Hausdorff, the image f(G) is a compact group and f
maps closed (hence compact) subsets of G onto compact (hence closed) subsets of H. Then
f ′ being a bijective and closed map is a homeomorphism, and thus f−1 is a morphism of
compact groups. ■

3.3. Abelian Groups. A large portion of studying the proceeding material is the study of
abelian groups. Here are a couple of key facts that will be used later on.

Definition 3.9. If a group A is abelian, we define its torsion as

tor(A) = {a ∈ A | na = 0 for all n ∈ N}
and we say A is torsion-free if tor(A) = {0}.

Essentially, an abelian group is torsion-free if all of its elements have infinite order besides
the trivial element. Again, the study of torsion groups can become rather involved (especially
with free groups), but we only seek to analyze both of these ideas on the surface level.

Definition 3.10. If A and B are abelian groups, then we define

Hom(A,B) = {f | f : A→ B is a homomorphism} ⊆ BA

as the set of (continuous) homomorphisms f from A to B. We call Hom(A,B) the Hom
group of the abelian groups A and B.

Similarly to how we observed with inverse systems, we introduce one last definition that
will help us link different algebraic objects together via a series of mappings.

Definition 3.11. For groups Gi, the chain of homomorphisms

G0
f1−−→ G1

f2−−→ G2
f3−−→ · · · fn−−→ Gn

is called an exact sequence when image(fi) = ker(fi+1). When G0 = Gn = 0 we say that this
is a short exact sequence.

Notice that these sets need not be groups, they can be rings or even modules as well. The
definition of an exact sequence is by no means restricted to groups.

4. Character Groups

Using the theory developed in the previous section, we now have the tools necessary to
learn the basic theory of character groups.

Definition 4.1. Let A be a (discrete) abelian group. Then Hom(A,T) ⊆ TA is called the

character group of A which we denote as Â. Its elements are called the characters of A.

It is important to note that Â is an abelian group with respect to pointwise addition.
Seeing this definition in light of Theorem 3.7, we have the following result.

Theorem 4.2. The character group of an abelian group is a compact and abelian.
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This allows us to have surprisingly weird relationships between groups.

Example. Consider the function φ : Ẑ = Hom(Z,T) → T by the mapping f 7→ f(1). This

mapping is an isomorphism and continuous via pointwise convergence. Since Ẑ is compact

and T is Hausdorff, by Theorem 3.2 this is an isomorphism so we have Ẑ ∼= T.

It is certainly helpful to discover some properties of the elements of Â. We propose the
following definition to get started.

Definition 4.3. Let X and Y be sets and F ⊆ Y X the set of functions from X to Y . We
say that F separates the points of X if for any x1, x2 ∈ X that there is an f ∈ F such that
f(x1) ̸= f(x2).

We can use this idea of separation in sets to see that in an abelian group A, there are
enough characters to separate the points. We propose another definition.

Definition 4.4. Let A be an abelian group. Then A is said to be divisible if for every a1 ∈ A
and n ∈ N that there is an a2 ∈ A such that n · a2 = a1.

Remark 4.5. This definition is essentially saying that for each element in the abelian group,
that each element is a multiple of another. Simple examples of this would be R and Q.

The important takewaway from this is that given some subgroup S of A, for some homo-
morphism f : S → I where I is divisible, then there is a homomorphic extension F : A→ I.
It can be seen in this diagram.

I
= // I

S
incl

//

f

OO

A

F

OO

Figure 3. Diagram of homomorphic extension of divisibility maps.

Theorem 4.6. The characters of an abelian group A separate the points.

Proof. Let a be some nonzero element in A. We find some character χ ∈ Â = Hom(A,T) such
that χ(a) ̸= 0. Let S ⊆ Z(a) in A. If S is infinite then S is free, and for any nonzero t ∈ T
there is an f : S → T such that f(a) = t. If S is finite, let |S| = n. Then S ∼= 1

n
Z/Z ⊆ T,

which means that f : S → T is injective. Now, we can let χ : A → T be a homeomorphic
extension with respect to the divisible group T, or in other words that χ(a) = f(a) ̸= 0.
Done. ■

Using this as a sort of “stepping stone” to the rest of the good stuff about character
groups, we propose the following.

Theorem 4.7. Let A be an abelian group and let Â = Hom(A,T) be its character group
with characters χ. Then the function

ηA : A→ ˆ̂
A, ηA(a)(χ) = χ(a)
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is an injective morphism of groups and if G is a compact abelian group then

ηG : G→ ˆ̂
G, ηG(g)(χ) = χ(g)

is a morphism of compact abelian groups.

Proof. We prove the results of ηA first. Notice that the fact that it’s a morphism follows

immediately from pointwise-addition in Â. An element k ∈ ker(ηA) if χ(k) = 0 for all χ ∈ Â.
However, since all such χ seperate the points in A, we must have that k = 0. This implies
that ker(ηA) is trivial, which implies that ηA is injective.

Now we prove the results of ηG. From the same logic before it follows that ηG is a morphism.
The issue is that we need continuity now, since we are dealing with compact groups. The
character map χ : G→ T by g 7→ χ(g) is continuous by the continuity of characters. Hence,
we have

(χ)χ∈Ĝ : G→ T Ĝ, g 7→ (χ)χ∈Ĝ(g)

is also continuous via the product topology. Since, by definition, we have that the character

group of the character group
ˆ̂
G = Hom(Ĝ,T) ⊆ T Ĝ inherits its structure from the product,

we have that ηG is continuous. ■

5. The p-adic Solenoid Sp
After all of that build up, it is time to put it all together. We begin with our discussion

of Sp where we started: inverse systems.

Definition 5.1. The p-adic solenoid Sp is the inverse limit of the inverse system (R/pnZ, φn)n≥0.
In other words,

Sp = lim
←−

R/pnZ.

To clarify what is going on here, it is helpful to revisit the example of Zp. We viewed
Zp as the inverse limit of the integers modulo pn; in the case of Sp, we are looking at the
inverse limit of circle groups T = R/Z in a similar way. With this definition, we can actually

Sp
f
��

fn+1

ss
fn

rr· · · R/pnZφn−1

oo R/pn+1Zφn

oo · · ·φn+1

oo lim
←−

R/pnZoo

ψn

oo

Figure 4. Diagram of (R/pnZ, φn)n≥0. Visual depiction of Sp = lim
←−

R/pnZ.

approach the solenoid in a visual way as an infinite embedding of tori in R3. Take a solid
torus D1 and embed it into Euclidean space. Then take a second solid torus, say D2, and
wind it around D1 a p amount of times. Then do the same for D3 to D2, and Dn+1 for Dn.
As n grows larger and larger, we continue this recursion and form the intersection

D∞ =
∞⋂
i=1

Di
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and we have that D∞ is homeomorphic to Sp. A visualization of this is shown below for the
case of p = 2, which we call the dyadic solenoid S2.

Figure 5. An embedding of S2 into R3.

This construction of the dyadic solenoid is helpful in visualizing for general p in a way
that is more appealing to human intuition.

6. p-torsion of Sp
Before we begin with the discussion of p-torsion for Sp, we will look at the unique cyclic

subgroups of Sp to prove that Sp has no p-torsion. This section is based off of the works of
Robert [Rob13].

Theorem 6.1. The solenoid Sp has a unique cyclic subgroup Cm of order m for each positive
integer m ≥ 1 prime to p.

Proof. The proof of this theorem is followed from the well-known fact that there exists a
unique cyclic subgroup of order m in the circle m−1Z/Z ⊂ R/Z for every positive integer
m ≥ 1. Using this, let us denote temporarily by Cn

m the cyclic subgroup of order m of the
circle R/pnZ, whose subgroup is m−1Z/pnZ. Since the transition maps

φn : R/pn+1Z −→ R/pnZ

have a kernel of order p prime to m by assumption, they induce isomorphisms Cn+1
m → Cn

m.
The inverse limit of this constant sequence is therefore the cyclic subgroup Cm ⊂ Sp.
To prove the uniqueness of this cyclic subgroup Cm, we consider some homomorphism

σ : Z/mZ→ Sp. Then the composite map

ψn ◦ σ : Z/mZ→ Sp → R/pnZ

has an image in the unique cyclic subgroup Cn
m of the circle R/pnZ. Hence, σ has an image

in Cm, and this concludes the proof. ■

This unique cyclic subgroup Cm of order m for each positive integer m ≥ 1 prime to p has
image ψ(Cm) in the circle given by

ψ(Cm) = m−1Z/Z ⊂ R/Z.

Since ψ−1(m−1Z/Z) ∼= Cm×Zp, Cm is the maximal finite subgroup contained in ψ−1(m−1Z/Z).
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Using this information about the unique cyclic subgroup Cm of Sp, we will show that Sp
has no p-torsion. We extend the definition of p-torsion of some abelian group from 3.9 by
noting that

torp(A) = {a ∈ A | pna = 0 for all n ∈ N}

Theorem 6.2. The p-adic solenoid Sp has no p-torsion.

Proof. Let σ : Z/pZ → Sp be any homomorphism of a cyclic group of order p into the
solenoid. We claim that all composites

φn ◦ ψn+1 ◦ σ : Z/pZ→ Sp → R/pn+1Z→ R/pnZ

are trivial. Indeed, the composite map

ψn+1 ◦ σ : Z/pZ→ Sp → R/pn+1Z

must have an image in the unique cyclic subgroup of order p of the circle R/pn+1Z, and
this subgroup is precisely the kernel of the connecting homomorphism φn and ψn ◦ σ =
φn(ψn+1 ◦ σ). Consequently, there is no element of order p in Sp and a fortiori no element of
order pk for k ≥ 1 in Sp. This concludes that Sp has no p-torsion. ■

7. The Quotient Sp
In order to represent the p-adic solenoid as a quotient, we need a way of embedding R and

Qp into Sp. The following two theorems state this more precisely, which are based off of the
work of [Rob13].

Theorem 7.1. The solenoid Sp contains a dense subgroup isomorphic to R.

Proof. The idea of the proof is rather simple: find an injective homomorphism from R to Sp,
and restrict to its image. Such a homomorphism is obtained from the universal property in
Definition 2.1. Observe that the projections fn : R → R/pnZ given by x 7→ x (mod pnZ)
are such that fn = φn ◦ fn+1, where φn is a transition map of (R/pnZ, φn). Hence there is
a unique map f : R → Sp with the factorization fn = ψn ◦ f : R → Sp → R/pnZ. Since
(R/pnZ, φn) is a system of groups R/pnZ and homomorphisms φn, we see that f (and ψn)
is also a homomorphism.

We will prove that the kernel of f is trivial. Suppose that x is a nonzero real number.
Choose n large enough such that pn > |x| > 0. This means that fn(x) ̸= 0 + R/pnZ, which
implies f(x) ̸= 0 ∈ Sp since fn(x) = ψ(f(x)); it follows that x is not in ker f . Thus f is
injective, as desired.

Since fn is surjective and fn = φn ◦ f , we have

ψn(image(f)) = image(fn) = R/pnZ.

It follows by Corollary 2.7 that image(f) ⊆ Sp is dense. ■

Theorem 7.2. The solenoid Sp contains a dense subgroup isomorphic to Qp.

Proof. Define the subgroups

Hk = ψ−10 (pkZ/Z) ⊂ Sp.
In particular, we see that H0 = kerψ0 = Sp. This is a subgroup of index pk of Hk, as

Hk = lim
←−

pkZ/pnZ ∼= p−kZp.
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Therefore,

Qp
∼= ψ−1(Z[1/p]/Z) =

⋃
ψ−10 (p−kZ/Z) =

⋃
Hk ⊂ Sp.

The density of
⋃
Hk ⊂ Sp follows from the density of the images

ψn

(⋃
Hk

)
= Z[1/p]/pnZ ⊂ R/pnZ

and Corollary 2.7. ■

Theorem 7.3. The sum homomorphism f : R × Qp −→ Sp furnishes an isomorphism
f

′
: (R×Qp)/Γp ∼= Sp both algebraically and topologically.

For the proof we will have to introduce fractional and integral parts of the p-adic integers.

Definition 7.4. For any p-adic integer represented as x =
∑

i≥m xip
i starting at index

m = vp(x) ∈ Z, we define

[x] =
∑
i≥0

xip
i ∈ Zp as the integral part of x,

⟨x⟩ =
∑
i<0

xip
i ∈ Z[1/p] as the fractional part of x

We thus obtain

x = [x] + ⟨x⟩ : Q = Zp + Z[1/p]

Also we see if ⟨x⟩ ≠ 0, then ⟨x⟩ = apv for integers a and v < 0. decomposition depends on
the choice of representation chosen for digits; here 0 ≤ xi ≤ p − 1. With this choice, more
can be said of the fractional part as a real number, namely

0 ≤ ⟨x⟩ =
∑
i<0

xip
i =

∑
1≤j≤−v

x−j
pj

< (p− 1)
∑
j≥1

1

pj
= 1.

Hence, the fractional part of any p-adic number satisfies the usual condition of

⟨x⟩ ∈ [0, 1) ∩ Z[1/p].

Now we can proceed with the proof of Theorem 7.3 using the knowledge of fractional and
integral parts.

Proof. Since all the maps fn are surjective (2.1), the map f has a dense image. Moreover,
using integral and fractional parts introduced before,

f(t, x) = f(t+ ⟨x⟩, x− ⟨x⟩) = f(s, y),

where s ∈ R and y = x− ⟨x⟩ = [x] ∈ Zp. Again, we have,

f(s, y) = f(s− [s], y + [y]) = f(u, z),

where u = s− [s] ∈ [0, 1) and z = y + [s] ∈ Zp. This proves,

image(f) = f(R×Qp) = f([0, 1)× Zp).

A fortiori, the image of f is equal to f([0, 1]×Zp), hence is compact and closed. Consequently,
f is surjective (and f ′ is bijective). In fact, the preceding equalities also show that the
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Hausdorff quotient (recall that the subgroup Γp is discrete and closed) is also the image of
the compact set Ω = [0, 1]×Zp and hence is compact. This results in the continuous bijection

f
′
: (R×Qp)/Γp −→ Sp

which forms a mapping of two compact spaces, and thus f ′ is a homeomorphism. ■

Corollary 7.5. Sp is a quotient of R×Zp by the discrete subgroup ∆z = {(m,−m);m ∈ Z}

f
′
: (R× Zp)/ ker f

′ ∼= Sp.

Proof. Since the restriction of the sum homomorphism f : R × Qp −→ Sp to the subgroup
R×Zp is already surjective, this restriction gives a (topological and algebraic) isomorphism

f
′
: (R× Zp)/ ker f

′ ∼= Zp.

But, we see that

ker f
′
= (ker f) ∩ (R× Zp) = ∆z = {(m,−m) : m ∈ Z}

and the proof is complete. ■

Presentations of the solenoid can be gathered in a commutative diagram of homomor-
phisms:

Z[1/p] Qp

R Sp.

Figure 6. Presentation of Sp

Corollary 7.6. Sp can also be viewed as a quotient of the topological space [0, 1] × Zp by
equivalence relation identifying (1, x) to (0, x+ 1) (x ∈ Zp).

Proof. This follows immediately from the previous corollary, since the restriction of sum
homomorphism to [0, 1] × Zp is already surjective, whereas its restriction to [0, 1) × Zp is
bijective. ■

This gives the same topological model as in Figure 5: two ends of the cylinder [0, 1]× Zp
having basis Zp by a twist representing the unit shift of Zp.

8. Closed subgroups of Sp
This section is based off of the work of [Rob13]. We first discuss a few theorem that help

us in proving the existence of certain closed subgroups of Sp. By the end of the section, we
hope to establish all the closed subgroups of Sp.

Theorem 8.1. Let σ : Cpm → Cpm−1 be a surjective homomorphism between two cyclic
groups of order pm and pm−1. Then the only subgroup H ⊂ Cpm not contained in the kernel
of σ is H = Cpm.
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Proof. Recall that any subgroup of a cyclic group is cyclic and that the number of generators
of Cn ∼= Z/nZ is given by the Euler φ-function φ(n). If n = pm, the power of a prime p, the
number of generators is

φ(pm) = pm−1(p− 1) = pm − pm−1.
Consequently, all elements not in the kernel of a surjective homomorphism of a cyclic group
of order pm onto a cyclic group of order pm−1 are generators of the cyclic group of order pm

which implies that the kernel has an order of pm−1. ■

Theorem 8.2. For each integer k ≥ 0, there is exactly one subgroup Hk ⊂ Sp having a
projection of order pk in the circle: ψ(Hk) = p−kZ/Z ⊂ R/Z. This subgroup is Hk =
ψ−1(p−kZ/Z) ⊂ Sp.

Proof. The proof of this theorem is quite simple as it is directly followed from the afore-
mentioned theorem. If we the aforementioned theorem to each surjective homomorphism
p−kZ/pn+1Z→ p−kZ/pnZ in the sequence of connecting homomorphisms defining the solenoid
as an inverse limit, the inverse limit of these cyclic groups is p−kZp. ■

We now look at the closed subgroups of Sp in the following theorem.

Theorem 8.3. The closed subgroups of the solenoid Sp are

(1) Cm, the cyclic group of order m relatively prime to p (m ≥ 1),
(2) Cm × pkZp, where m is prime to p and k ∈ Z,
(3) Sp itself (connected).

Proof. Let us consider H to be a closed subgroup of Sp. From the fact that H is compact,
it is implied that image ψ(H) is a closed subgroup of the circle R/Z. But from the previous
theorems, this stands true only when

ψ(H) = n−1Z/Z ⊂ R/Z cyclic of order n ≥ 1

or
ψ(H) = R/Z is the whole circle.

Through these possibilities, we prove the existence of various closed subgroups in Sp.
(1) From the second case where ψ(H) = R/Z is the whole circle, ψn(H) ⊂ R/pnZ must

be a closed subgroup of finite index and must be open in this circle. By connectivity,
ψn(H) ⊂ R/pnZ and since this must hold for all n ≥ 1, we conclude that

H = H̄ =
⋂
n≥1

f−1n
¯((fnH)) = Sp.

Evidently, H = Sp in this case.
(2) Suppose ψ(H) = {0}, then H ⊂ ψ−1(0) = Zp ⊂ Sp. The only possibilities now are:

H = {0}, pkZp for some integer k ≥ 0.

However, these possibilities already occur in the list for Cm = {0} when (m = 1).
(3) Let us now consider the case when ψ(H) = a−1Z/Z is cyclic and nontrivial. Supposed

a = pk ·m with k ≥ 0 and m prime to p. Then, by the Chinese remainder theorem,
this cyclic group ψ(H) us a direct product of the cyclic subgroups m−1Z/Z and
p−kZ/Z. If k ≥ 1, theorem 8.1 shows that ψn+1(H) must contain an element of
order pk+1, and theorem 8.2 shows that H contains ψ−1(pkZ/Z) = p−kZp ⊂ Sp.
Finally, H = Cm × p−kZp. However, when k = 0, two possibilities occur: Either
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ψn(H) is cyclic of order m for all n, or there is a first n such that ψn(H) contains an
element of order p. In the first case, we note that H = Cm and in the second case,
H = Cm × pnZp.

This concludes the proof of this theorem. ■

9. Topology of Sp
We have started to make progress towards an understanding of topology of the Sp since

Theorem 2.4. We also have a basic visualisation of the Sp from Figure 5 and Corollary 7.6.

Lemma 9.1. Let U be any proper subset of the circle R/Z. Then the subspace ψ−1(U) ⊂ Sp
of the solenoid is homeomorphic to U× Zp. The map

(t, x) = (t− [t], x+ [t]) −→ (0, x+ [t])

furnishes by restriction a continuous retraction of ψ−1([0, η]) ⊂ Sp onto neutral fiber Zp ⊂
Sp(0 < η < 1).

Proof. We have a continuous surjective homomorphism ψ : Sp −→ R/Zp leading to Sp being
expressed in the chain

0 −→ Zp −→ Sp −→ R/Z −→ 0.

The subspaces ψ−1([0, η])(0 < η < 1) have continuous retractions on the fiber of Zp since
ψ−1([0, η]) is homomorphic to [0, η]× Zp. ■

Lemma 9.2. Sp is connected.

Proof. We have to prove that the closed subgroups of Sp are Sp only. Assume that φ(H) =
a−1Z/Z is cyclic and not trivial. We can write a = pk · m with k ≤ 0 and m relatively
prime to p. We see that this cyclic group is the direct product of two subgroups m−1Z/Z
and p−kZ/Z. If k ≥ 1, then φn+1(H) must contain an element of order pk+1. We also see
that H contains φ−1(p−1Z/Z) = p−kZp ⊂ Sp, and finally H = Cm × p−kZp. If k = 0, two
possibilities arise, either φn(H) is cyclic of order m for all n, or there is a first n such taht
this group φn(H) contains an element of order p. In the first case H = Cm, while in the
second case H = Cm × pnZp. ■

Lemma 9.3. Sp is a compact space.

Proof. From Definition 5 we know that

Sp = lim
←−

R/pnZ

which is the inverse limit of the inverse system (R/pnZ, φn)n≥0. Applying Theorem 2.4 we
see that Sp is compact. ■

We also note that Sp shows another interesting topological property. We introduce the
following definition to help.

Definition 9.4. A compact and connected topological space K is called indecomposable
when the only partition of K in two compact and connected subsets is the trivial one.

It turns out that the solenoid is indecomposable, which we prove here.

Lemma 9.5. Sp is indecomposable.
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Proof. Let there be two compact connected subsets A and B assuming A ̸= Sp. We have
that

K =
⋂
n≥1

ψ−1n (ψn(K))

for every compact set K, ψn(A) ̸= R/pnZp for some integer. We take an n and b ∈ B such
that,

φ−1n (b) ⊂ R/pn+1Z.
We see there is a restriction on φn as

C = φ−1n (φn(B)) = φn+1(B).

We have to prove φ|C not being injective implies φ|C is surjective under the assumptions. It
is enough to do so when C ̸= R/aZ. Take a point P /∈ C ⊂ R/aZ and consider a projection
from the point P of the circle R/aZ onto a line R. We see this is a homeomorphism

f : (R/aZ)− {P} −→ R

The image f(C) of the subset C is a connected subset of the real line containing the two
different images of two different congruent points mod Z. Since any connected set in the
real line is an interval, this proves that f(C) contains the whole interval linking these two
congruent points. This means that C contains a whole arc I of the circle with the image
φ(I) = R/Z. This completes the proof. ■

Corollary 9.6. The p-adic solenoid is an indecomposable compact connected topological
space.

10. The Pontryagin Duality of Sp
This section is largely based on the works of Hofmann and Morris [HM06]. Our goal now

is to find the Pontryagin Dual of Sp. To do this, we combine the language of inverse systems
and abelian groups into one cohesive theory, and propose a quick rephrasing of the definition
of an inverse system.

Definition 10.1 (Topological Groups). Let D be a directed set. An inverse system of
topological groups G over D is a family of morphisms (bonding maps)

I = {fjk : Gk → Gj | (i, j) ∈ D ×D, j ≤ k}
where Gi, Gj are topological groups with j, i ∈ D satisfying the following criteria:

(1) fij = eGj
, for all j ∈ D.

(2) fjk ◦ fkl = fjl for all j, k, l ∈ D with j ≤ k ≤ l.

The inverse limit of I is denoted as lim
←−
I.

We leave it to the reader to discern that both of the definitions used to describe the
inverse system are equivalent. Indeed, it is also beneficial to see why these bonding maps
are surjective when these groups are compact. As an authors note, we assume all abelian
groups are discrete topological unless otherwise specified.

Let A be an abelian group and let Υ be its family of subgroups. This actually forms a
directed set: if E,F ∈ Υ are arbitrary subgroups, then F +E ∈ Υ as well. Simply put, A is
just the union of all F ∈ Υ. However, if E,F ∈ Υ and E ⊆ F then the inclusion map from E
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to F induces a morphism of both of their character groups fEF : F̂ → Ê via fEF (χ) = χ|E.
In other words, fEF takes some character χ ∈ F̂ and maps it restrictively to a character in

Ê. In total, the family of morphisms

I = {fEF : F̂ → Ê | E,F ∈ Υ, E ⊆ F}
forms an inverse system of compact abelian groups. Using the divisibility of T, each character
on E extends to one on F which means that I is strict (or that all fEF are surjective).

The inclusion map from F to A induces an injective morphism with fFA : Â → F̂ with
f(χ) = χ|F .

Theorem 10.2. The mapping Θ : Â → lim
←−

F̂F∈Υ defined by χ 7→ (χ|F )F∈Υ is an isomor-

phism of compact abelian groups.

Proof. We first have to show that this is a morphism above everything else. We can see this
by noting that this is the same as writing

Θ : Hom(A,T)→ lim
←−
F∈Υ

Hom(F,T), χ 7→ (χ|F )F∈Υ

which is a morphism of compact groups by Theorem 4.2. By definition, an element χ ∈
ker(Θ) iff (χ|F )F∈Υ = 0. This only happens when χ = 0, so ker(Θ) is trivial and Θ is

injective. To prove surjectivity, let α = (χF )F∈Υ ∈ lim
←−

F̂F∈Υ. We show that Θ(χ) = α. By

the definition of the bonding maps that form the inverse system, for every pair of finitely
generated subgroups E ⊆ F in A we have χF |E = χE. Now we define χ : A → T as
χ(a) = χF (a) for some a ∈ F ⊆ A (we can do this since χF (a) ∈ T does not depend on F ).
If we take F = Z(a) + Z(b) for a, b ∈ A, then

χ(a+ b) = χF (a+ b) = χF (a) + χF (b) = χ(a) + χ(b)

so χ ∈ Hom(A,T) and Θ(χ) = χ|F = χF . This shows that Θ(χ) = α, which means that Θ
is surjective. Since we proved injectivity and surjectivity, we have that bijectivity follows so
we are done. ■

Similarly to showing how the union of sets with some property obtains a set with that
property, we prove a result with characters.

Theorem 10.3. If G is a strict inverse limit of lim
j∈D

Ĝj then

Ĝ =
⋃
j∈D

Ĝj.

Proof. We prove this using a containment argument. If we assume G is a strict inverse limit

of comapact abelian groups lim
j∈D

Ĝj with bonding maps fj : G → Gj, then every character

χ : Gj → T gives another character χ◦fj : G→ T. Since each fj is surjective, χ◦fj : G→ T
with the map χ 7→ χ ◦ fj is injective. Thus, Ĝj ⊆ Ĝ so the first direction is proved.

Now we prove the second part. Assume that χ : G→ T is in Ĝ. If we denote the image of
an open interval (−1/n, 1/n) in T as V , then {0} is the only subgroup of T that is contained
in V as well. Now, because O = χ−1(V ) is an open neighborhood around 0 in G, we have
ker(fj) ⊆ O for some j ∈ D, which means that ker(fj) is a subgroup of T contained in V
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and thus is {0}. From this we get ker(fj) ⊆ ker(χ) and that there is a unique morphism

χj : Gj → T such that χ = χf ◦ fj. Hence, we have Ĝj ⊇ Ĝ so the proof is complete. ■

Now it is time to prove the major theorem that we have working up to for quite a while
now. We prove the first half of the Pontryagin Duality Theorem.

Theorem 10.4 (Pontryagin Duality Theorem). For any abelian group A, the morphism

ηA : A→ ˆ̂
A is an isomorphism. Equivalently, ηA : A→ Hom(Â,T) is an isomorphism.

Proof. As we previously proved in Theorem 10.2, we know that Â is the strict inverse limit of

limF∈Υ F̂ with Υ being a directed family of finitely generated subsets of A. The limit maps

fF : Â→ F̂ are given by fF (χ) = χ|F , which are surjective and induce injective morphisms
(inclusion maps)

Hom(fF : T) : Hom(F̂ ,T)→ Hom(Â,T),
with Hom(fF ,T)(Ξ) = Ξ ◦ fF . Because of Theorem 10, we already know that Hom(Â,T) is
the union of the images of Hom(fF ,T). Thus, for any Ω ∈ Hom(Â,T), there is an F ∈ Υ

such that Ω is in the image of Hom(fF ,T). Additionally, there is a Ξ ∈ Hom(F̂ ,T) such that
Ω = Hom(fF ,T)(Ξ) = Ξ ◦ fF . We can now apply a lemma.

Lemma 10.5. If F is a finitely generated abelian group, then ηF : F → Hom(F̂ ,T) is an
isomorphism.

Thus, there is an a ∈ F such that Ξ = ηF (a) ∈ Hom(F̂ ,T). Hence, Ω = ηF (a) ◦ fF . To
finish proving surjectivity, we notice that for any χ : A→ T that

Ω(χ) = ηF (a)(fF (χ)) = ηF (a)(χ|F ) = (χ|F )(a) = χ(a) = ηA(a)(χ).

This proves that ηA : A → ˆ̂
A is surjective. We already proved that ηA was injective in

Theorem 4.7, so ηA is bijective and the proof is complete. ■

F Hom(F̂ ,T)

A Hom(Â,T)

ηF

incl Hom(încl,T)

ηA

Figure 7. Commutative diagram of the Pontryagin Duality Theorem

Note that when G is a compact abelian group and satisfies the above theorem, that G
is said to have duality. However, the result that we just found is not the complete story.
Indeed, there is one last theorem we must proof.

Theorem 10.6. If G is a compact abelian group is limj∈DGj of a strict inverse system and
each Gj has duality then G has duality as well.

Proof. We first show that ηA : G→ ˆ̂
G is bijective. Note that we still have to do this despite

the Pontryagin Duality Theorem, since we are assuming that G is ablelian and compact. In
light of Theorem 4.7, we actually have to prove that this is surjective and injective this time
as well.
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Assume that Ω ∈ ˆ̂
G, or that Ω ∈ Hom(Ĝ,T). By Theorem 10, we know that we can write

Ĝ =
⋃
j∈D

Ĝj.

Denote Ωj = Ω|Ĝj. Then Ωj ∈ Hom(Ĝ,T). By hypothesis we are assuming that Gj has
duality, so ηGj

is surjective and thus there is a gj ∈ Gj such that ηGj
(gj) = Ωj. We claim

that g = (gj)j∈D ∈
∏

j∈DGj is an element of G. Without loss of generality, let k ≤ j for

j, k ∈ D. We have the following (commutative) diagram:

Gk Hom(Ĝk,T)

Gj Hom(Ĝj,T)

ηGk

fjk Hom(f̂jk,T)

ηGj

However, notice that Hom(f̂jk,T) is a restriction map sending Ωk to Ωk|Ĝj = Ωj. Thus we
find that

ηGj
(fjk(gk)) =

ˆ̂
fjk(ηGj

(gk)) =
ˆ̂
fjk(Ωk) = Ωj = ηGj

(gj).

But since each Gj was assumed to have duality, we have that ηGj
is injective (because it is

bijective), so we have fjk(gk) = gj. This shows that g ∈ limj∈DGj.
Next, consider the limit map fj : G→ Gj. We also have a diagram similar to before:

G Hom(Ĝ,T)

Gj Hom(Ĝj,T)

ηG

fj Hom(f̂j ,T)

ηGj

Hence,
ˆ̂
fj(nG(g)) = ηGj

(fj(g)) = ηGj
(gj) = Ωj. However, this time we see that Hom(f̂j,T)

is the restriction Ξ→ Ξ|Ĝj = Ω. Hence, ηG(g) = Ω and surjectivity is proven.
To finish we show that ηG is injective. This is rather simpler than proving surjectivity

but we still show it. Note that this is equivalent to saying that the characters G separate
the points; consider the set K = {ker(fj) | j ∈ D}. Clearly we have ∩K = {0} so there is
a j ∈ D such that g ̸∈ ker(fj). Since Gj was assumed to have duality by hypothesis, its
characters separate the points. We are done at this point, since this means that there is

some χ ∈ Ĝj such that χ(fj(g)) ̸= 0, and thus χ ◦ fj ∈ Ĝ is a character of G that does not
annihilate g. Our proof is now complete. ■

All of this work amounts to a very happy ending indeed. We present the following result
as a conclusion to our work.

Theorem 10.7. The p-adic solenoid Sp has duality and its character is Z[1/p].

Proof. Given that Sp is the inverse limit of circle groups, one must simply show that T̂ = Z
which is not hard. Thus, Sp has duality. To find its dual, we note that the dual to the
morphism µp : T → T is µp : Z → Z which is equivalent to Z → 1

p
Z. By Theorem 10.3 we

see then that we must have

Ŝp =
⋃
n≥1

1

pn
Z = Z[1/p].
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This completes our work. ■

An elightening thing to note is how Qp is intimately related with the solenoid. Define

Φn :

1
p∞

Z
pn+1Z

→
1
p∞

Z
pnZ

, Φn(q + pn+1Z) = q + pnZ.

Then applying this we see that we can describe the p-adic field as

Qp = lim

(
1
p∞

Z
Z

Φ1←−
1
p∞

Z
pZ

Φ2←−
1
p∞

Z
p2Z

Φ3←− · · ·

)
.

Not only do we have Z[1/p] ⊂ Qp, but we showed early that Qp is a dense subset of Sp. This
provides an interesting “size issue” between the three structures.

Acknowledgements

Co-author Nicholas James would like to thank his family for everything that they do, as
well as Simon Rubinstein-Salzedo and Neel Murthy for their advice and input when writing
this paper.

Co-author Jinfei Huang would like to thank his mentor Carson Mitchell for his patience
and guidance toward the completion of the present paper. Much thanks again to Simon
Rubinstein-Salzedo for his advice and, of course, teaching the Euler Circle classes.

Co-author Gurasees Singh Dhanoa would like to thank the co-authors for putting in time
and effort into the completion of this paper along with thanking Simon Rubinstein-Salzedo
for teaching the p-adic analysis course.



22 NICHOLAS JAMES, JINFEI HUANG, GURASEES SINGH DHANOA, KRISHNA PRANEETH SIDDE

References

[HM06] Karl H. Hofmann and Sydney A. Morris. The Structure of Compact Groups. De Gruyter Studies in
Mathematics, 2006.

[Rob13] Alain M. Robert. A Course in p-adic Analysis, volume 198. Springer Science & Business Media,
2013.


	1. Introduction
	2. Inverse Systems
	2.1. Definition of Inverse System
	2.2. A Familiar Example
	2.3. A Question of Existence
	2.4. The Topology of the Inverse System

	3. Topological Groups and Algebra
	3.1. The Circle Group
	3.2. Topological Groups
	3.3. Abelian Groups

	4. Character Groups
	5. The p-adic Solenoid Sp
	6. p-torsion of Sp
	7. The Quotient Sp
	8. Closed subgroups of Sp
	9. Topology of Sp
	10. The Pontryagin Duality of Sp
	Acknowledgements
	References

