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1 Introduction

Hasse’s discovery regarding Minskowski’s work on the quadractic forms over
rational numbers showed that a generalisation could be formed by denoting all
real and p-adic numbers in terms of quadratic forms. This was the first real step
for the importance of p-adic numbers as Hasse emphasized this generalisation
to be applied to number theory. This principle came to be known as the Hasse
principle or the local-global principle which states that a property of theorem
would hold over Q if and only if it holds over both R and Qp

While this principle does not constitute of a definite theorem, it provides a
philosophy in number theory which equates to that of studying global properties
of a surface or curve based on local properties near points on the surface or curve
in geometry. We consider that Q is a global field and R and Qp are local fields.

Using the theorems stating that the sums of two squares in every R and
Zp. we see what the local-global principle is about. After which, we will look
at Hasse’s version of Miskowski’s theorem over quadratic forms followed by
counter-examples to the local-global principle. This would be followed by dis-
cussing the results in local-global principle for heights and lastly, powers.

2 Sums of two squares in Z
Theorem 1. A positive integer n can be denoted as a sum of two squares only
if each prime p dividing t with p = 3 (mod 4) has even multiplicity as a factor
of t.

Example 1. Let t = 15 = 3.5, The only prime factor congruent to 3 (mod 4),
in this case. would be 3, which divides 15 only once. The number t = 45 = 32.5
divides by 3 twice and 45 = 9+ 36 = 32 + 62 and therefore, is seen to be a sum
of two squares.

Theorem 2. For a prime p ≡ 3 (mod 4), some nonzero p-adic integer r would
be a sum of two squares in Zp if and only if ordp(r) is even.

Proof. Suppose r = peu such that e ≥ 0 and u ∈ Zx
p
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For some x and y in Zp, x
2 + y2 = u. Thus, to find a solution in Zp, we use

Hensel’s lemma and the pigeonhole principle.
Let us then consider the following sets

G = {y2 (mod p) : 0 ≤ y ≤ p− 1},

H = {u− x2 (mod p) : 0 ≤ x ≤ p− 1}.

An odd prime p would have (p+1)/2 squares in Zp including 0. Therefore, each
set |G| and |S| would be (p + 1)/2. The sets would then use the pigeonhole
principle because |G| + |S| = p + 1 > |Zp| and we follow the statement that
u ≡ x2

0 + y20 (mod p) since there are x0 and y0 from 0 to p − 1: y20 ≡ u − x2
0

(mod p) where x0 or y0 have at least one nonzero modulo p. We can suppose
that x0 ̸≡ 0 (mod p) as x0 and y0 are symmetric in terms of congruence.

We can then denote

f(X) = X2 + (y20 − u) ∈ Zp[X].

Using the Hensel’s lemma, we get that there is some x ∈ Zp : f(x) = 0 and
hence, x2 + y20 = u because we derive that f(x0) ≡ 0 (mod p) and f ′(x0) =
2x0 ̸≡ 0 (mod p).

In the case that e is even, we suppose e = 2k. Hence, r = p2ku = p2k(x2+y2).
We can denote it as r = (pkx)2 + (pky)2.

In the case that e is odd, we need to consider x = pnq and y = pnw in that
n ≥ 0 and both q and w are in Zp. We would denote this as

r = x2 + y2 = p2n(q2 + w2).

As per the theorem statement, q2 + w2 cannot be in Zx
p and are thus, ≡ 0

(mod p). We simplify as

q2 + w2 ≡ 0 (mod p)

q2 = −w2 ≡ (mod p)

−1 ≡ (q/w)2 ≡ (mod 0)

. Hence, −1 becomes a square in Zp when −1 (mod p) cannot be a square in
the case that p ≡ 3 (mod 4).

Theorem 3. A nonzero integer is a sum of two squares in Z if and only if it
is a sum of two squares in R and every Zp.

Proof. Let us consider a nonzero integer b is a sum of two squares in R and
in every Zp. Using 2, we understand that some prime p dividing b with p ≡ 3
(mod 4) would have an even multiplicity ordp(m). We can also suppose that
b > 0 since it is supposed to be the sum of two squares and therefore, using 1,
we can prove that b is, in fact, a sum of two squares in Z.
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3 Principle in Quadratic Forms

If we suppose quadratic forms Q(x, y) = ax2 + by2 with a, bϵZ − 0, not just
x2+y2, there is no guarantee that Q(x, y) = m in R and each Zp would provide
a solution in Z.
Example 2. Let us consider x2 + 11y2 = 3 with no integer solutions would
have a solution in R and Zp. Solvability in R becomes clear and solvability in
Zp for p ̸= 2 or 11 can be seen from solving the congruence x2 ≡ 3 − 11y2

(mod p) using the pigeonhole principle and applying Hensel’s lemma as we have
previously in 2.

To prove solvability in Z2, from 3/11 (mod 8) we understand that 3/11 is
a square in Z2 so we can solve 02 + 11y2 = 3 in Z2.

Example 3. Suppose 2x2 + 7y2 = 1. There are no integer solutions but there
is a real solution and a solution in Zp for p ̸= 2 or 7 by solving the congruence
2x2 ≡ 1− 7y2 (mod p) with the pigeonhole principle and then using Hensel’s
lemma.

In Z2 with x = 1 the equation becomes y2 = −1/7 which would have a
2-adic solution since 1/7 ≡ 1 (mod 8).

In Z7 we can solve 2x2 = 1 by Hensel’s lemma since 1/2 ≡ 4 (mod 7).

Using the reduction and Chinese remainder theorem, a polynomial equation
with integer coefficients that has solutions in Zp for all p has a solution as a
congruence mod m for all m ≥ 2 : x2 + 11y2 ≡ 3 (mod m) and 2x2 + 7y2 ≡ 1
(mod m) are both solvable for all m. Hence, we can understand the solvability
of a polynomial equation as a congruence in every modulus does not particularly
mean that we can find a solution to the polynomial equation in Z.

Theorem 4. Hasse Minskowski Theorem
Let Q(x1, . . . , xn) be a quadratic form with rational coefficients.

• For each cϵQx the equation Q(x) = c has a solution in Q if and only if it
has a solution in R and every Qp.

• The equation Q(x) = 0 has a solution in J besides (0, . . . , 0) if and only if
it has a solution in R and every Qp besides (0, . . . , 0).

However, it only applies to finitely many cases. Thus, when n ≥ 2 in both
the mentioned cases, its solvability in Qp is automatic except when p = 2 or a
coefficient of Q(x) is absent from Zx

p.

Example 4. Let us suppose the quadratic form f(x, y, z) = 5x2+7y2−13z2 and
attempt to find a nontrivial solution in Q3 for f(x, y, z) = 0.

We initially see that f(x, y, z) = 0 has a nontrivial solution in R3 which is
denoted as (1, 0,

√
5/13). Now, we consider p as a prime such as p ̸= 2, 5, 7, 13.

Thus, the number of variables f(x, y, z) would be 3 (mod p) because p ̸=
5, 7, 13 and therefore, degf < 3 (mod p). This quadratic form would have one
trivial solution: (0, 0, 0) but it would also have a nontrivial solution (x0, y0, z0).
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Without loss of generality, we can suppose that x0 ̸≡ 0 (mod p). We can
consider g(x) = 5x2+7y20−13z20 and so g(x) ≡ 0 (mod p). We lift the solution
through Hensel’s Lemma from (x0, y0, z0) to (x̃0, y0, z0) in Q3

p for all primes p.
In the cases of p = 2, 5, 7, 13, our nontrivial solution is denoted as (1, 0, 1)

for (mod 2), (0, 2, 1) for (mod 5), (2, 0, 1) for (mod 7) and (3, 1, 0) for
(mod 13).

Similarly, in the cases of p ̸= 2, 5, 7, 13, we can lift these solutions to Q3
p

through Hensel’s Lemma. Hnece, as f would represent 0 in R3 and Q3
p for all

primes p, the Hasse-Minskowski shows that f represents 0 in Q3.

4 Principle in Heights

Using the local-global principle in terms of heights can be useful to measure
the computational complexity of rational numbers in their reduced forms. A
relevant application of the local-global principle in heights is that of Hilbert’s
Product Formula.

Theorem 5. (Product Formula) Let a, b ∈ Q. So∏
p,∞

(a, b)Qp = 1.

Proof. The Hilbert symbol in our equation allows us to reduce the proof to the
following three cases

a = b = −1. In this case, when p ̸= 2,∞, vp(−1) = 0 which would translate
to (−1,−1)Qp

= 1. We find through computing inQ2 that (−1,−1)Q2 = −1 and
since a and b are negative, we derive that (a, b)R = −1. Thus,

∏
p,∞(−1,−1)Qp

=
1.

a = −1, b = l, a prime number. In this case, l = 2 and p ̸= 2,∞ so
vp(−1) = vp(2) = 0 and thus, (−1, 2)Qp

= 1. Furthermore, as z2 + x2 = 2y2

gives us the nontrivial solution (1, 1, 1) = (x, y, z), we can see that (−1, 2)R =
1 = (−1, 2)Q2

= 1. Thus,
∏

p,∞(−1, 2)Qp = 1.
In the case that l ̸= 2 and p = 2, we see that v2(−1) = v2(l) = 0, and so

(−1, l)Q2 = (−1)(l−1)/2. In the case that l ̸= 2, p ̸= 2 where p ̸= l, it derives
(−1, l)Qp = 1. In the case that p = l ̸= 2 then v2(−1) = 0 and vl(l) = 1 and thus,

(−1, l)Ql
= =1

l = (−1)(L−1)/2.. Hence, our product denoted as
∏

p,∞(−1, l)Qp

would be equal to 1.

a = l, b = l′. In this case, if l = l′, we derive from the properties of the Hilbert
symbol that (l, l) = (l,−l2) = (l,−1))l, l)(l, l). Thus, (l, l)Qp = (−1, l)Qp∀p
which was proven in the prior case. Hence, we suppose that l ̸= l. If l′ = 2
and p ̸= 2, l then vp(l) = vp(l

′) = 0 and so (l, 2)Qp
= 1. In the case where

l′ = 2 and p = 2, we see that (l, 2)Q2 = (−1)(l
2−1)/8. In the case that l′ = 2

and p = 1 ̸= 2, vl(l) = 1 and vl(2) = 0 then (l, 2)Ql
= 2

l = (−1)(l
2−1)/8. When

l ̸= l′, l, l′p ̸= 2, we have (l, l′)Qp = 1. If p = 2, we get (l, l′)Q2 = (−1)(l−1)(l′−1)/4
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as v2(l) = v2(l
′) = 0. As vl(l

′) = 1 = vl′(l), we get the result (l, l′)Ql
= ( l

′

l ) and

(l, l′)Q′
l
= ( l

l′ . Therefore, we get the result of the product as
∏

p,∞(l, l′)Qp
=

(−1)(l
2−1)/4( l

′

l )(
l
l′ ) = 1.

5 Principle in Powers

Theorem 6. A rational number is an nth power in Q if and only if it is an nth
power in R and every Qp.

Proof. Let us suppose that r ∈ Q in order to solve xn = r in R and every Qp.
Let us also assume that r ̸= 0, and see that for each p prime in r where r is an
nth power in Qp implies that ordp(r) is divisible by n. Hence, all primes in r
suppose an nth power in that r = sn for some s ∈ Q. In the case of n being
odd, it is absorbed into s and r is automatically an nth power in Q. In the case
of n being even, r exists as an nth power in R and therefore, r > 0 where r = sn

is still an nth power in Q.

However, this theorem proves a bit more nuanced outside of a finite sequence
such that if 2 ≤ n ≤ 7, the nth powers in Qx would prove to be the nonzero
rational numbers which are nth powers in all but finitely completed cycles of Q.
To understand this more, let us look at the example of n = 8.

Example 5. Let us show that 16 is an 8th power in all Q except Q2. We denote
the equation

X8 − 16 = (X4 − 4)(X4 + 4) = (X2 − 2)(X2 + 2)(X2 − 2X + 2)(X2 + 2X + 2).

Both the quadratic factors in this case have discriminant −4 which shows that
there is an 8th root of 16 in every completion of Q that has a square root of
either 2 or −2 or −4. We understand that 2 is a square in R and for every odd
prime, one of the three numbers meeting the condition are present in (Z/(p))x.
Hence, by Hensel’s lemma, 2, -2 or -4 is a square in Qp. In Q2, however, since
ord2(16) is not a multiple of 8, we see that 16 is an 8th power in every completion
of Q except for Q2. ()

Theorem 7. (Grunwald-Wang Theorem) An element x in a number field K is
an nth power in K if and only if it is an nth power in Kp for all but finitely
many primes of K.

The theorem itslef was originally just Grunwald’s theorem, however it was
prone to many errors until Wang’s counterexample (5). Essentially, the Grun-
wald theorem now states that

K(n, S) : {x ∈ K|x ∈ Kn
p∀p ̸∈ S}

such that
K(n, S) = Kn.

unless in the special cases that
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• K is sspecial such that 2s+1 divides n.

• S includes the special set consisting of 2-adic primes p, S0 : Kp is s-special.
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