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1 Introduction

The extensions of Qp can be divided into three types: unramified, tamely rami-
fied, and wildly ramified. As suggested by the name, the wildly ramified exten-
sions are the most complicated. There are many wildly ramified extensions of
a given degree, and they are much harder to classify than unramified or tamely
ramified extensions. The simplest case of wildly ramified extensions is the ex-
tensions of Qp of degree p. Information on this class of extensions is given by
the local fields database. This is the case that will be treated in this paper. I
first give background, and then give proofs of the main results. The extensions
of degree p for odd primes p were first classified by Shigeru Amano in 1971.
Amano’s paper proves results regarding degree p extensions of some finite ex-
tension k of Qp. In this paper I specialize to the case k = Qp, and prove that
all degree p extensions of Qp are generated by certain canonical polynomials. I
largely follow Amano’s argument in sections 1, 3, and 4 of his paper; specializing
to k = Qp allows me to simplify the notation and give simpler proofs of some
of the results. I also fill in some steps that were assumed to be obvious to the
reader.

2 Background

Though Qp is complete, it is not algebraically closed, meaning there are some
polynomials with coefficients in Qp that do not have roots in Qp. We can
generate extensions of Qp by adjoining roots of polynomials: for an irreducible
polynomial f(x) of degree n > 1, we can construct a field that contains Qp,

a root α of f , and all other elements required of a field, i.e. sums
∑n−1

i=0 aiα
i

where ai ∈ Qp. There is even a field which contains roots of all polynomials
with coefficients in Qp. This is the algebraic closure of Qp, denoted Qp. The
absolute value defined on Qp can be uniquely extended to Qp, as can the p-adic
valuation v. The following properties of the valuation will be used repeatedly:
v(ab) = v(a) + v(b) and v(a+ b) ≥ min(v(a), v(b)), with equality if v(a) ̸= v(b).
In particular, if we have a sum a0+...+an where each term has distinct valuation,
then v(a0 + ...+ an) = min(v(a0), ..., v(an)).
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When we extend Qp, the valuation can take on more values. The p-adic
valuation has only integer values on Qp, but in Qp(

√
p), where a root of x2 − p

has been added to Qp, v(
√
p) = 1

2 . In a finite extension of Qp the valuations
are integer multiples of 1

e for some positive integer e. This integer is called the
ramification index. An element π with the minimum possible positive valuation
is called a uniformizer of the extension field. The residue field of an extension K
is the field K/πK, where π is a uniformizer. The residue field can be thought of
as describing the coefficients which appear in the digit expansions of elements
of K. There is one unramified extension of each degree.

Unramified extensions are those with e = 1, so that all the valuations are
still integers. These extensions enlarge the residue field Fp of Qp to Fpk for some
k.

Totally ramified extensions are those where the ramification index is the
same as the degree of the extension, so that the extension is ‘as ramified as
possible’. Every extension of Qp can be represented as a composite (Qp(α))(β)
of an unramified and a totally ramified extension.

An Eisenstein polynomial is a monic polynomial xn+
∑n−1

i=0 aix
i with v(a0) =

1, v(ai) ≥ 1 for all i at least 1. All Eisenstein polynomials are irreducibly over
Qp.

Every totally ramified extension of Qp is generated by an Eisenstein polyno-
mial. Let the extension be of degree d. Then there is an element π of valuation
1
d . Let it be a root of a nonzero polynomial f =

∑d
i=0 aix

i of degree most d.
∞ = v(0) = v(f(π)) ̸= min(v(aiπ

i)), so the valuations of the terms cannot be
distinct, i.e. there must be at least two terms with the minimum valuation. The
valuation of aiπ

i is v(ai) +
i
d ∈ i

d + Z, so the only way two terms can have the
same valuation is if they are the a0 term and the adπ

d term. Then ad ̸= 0, so di-
vide by ad to produce a monic polynomial of degree d. Then 1 = v(πd) = v(a0),
so p|a0 but p2 ̸ |a0. v(aiπ

i) ≥ 1 for all i, so p|ai with 0 ≤ i ≤ d − 1. Thus
f is Eisenstein. Furthermore, Qp(π) has degree d, so it is the totally ramified
extension.

When the ramification index is not divisible by p, the extension is said to be
tamely ramified. There are relatively simple classifications of tamely ramified
extensions.

When the ramification index is divisible by p, the extension is said to be
wildly ramified.

There are many wildly ramified extensions of a given degree, and they are
much harder to classify than unramified or tamely ramified extensions. The
simplest case of wildly ramified extensions is the extensions of Qp of degree p.
This is the case that will be treated in this paper.

The following notation will be used:
Let p be an odd prime. Let v be the p-adic valuation extended to Qp. Define

a ≡ b when v(a) = v(b) and v(a − b) > v(a). Let K be a ramified degree p
extension of Qp.

Let π be an element of K with v(π) = 1
p . Then as above, π is a root of an

Eisenstein polynomial. πp = up, with u a unit. Consider π
u . u

p ≡ u, so (πu )
p =
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πp

up ≡ up
u = p, so the Eisenstein polynomial of π

u has constant term congruent
to −p. Thus we can assume without loss of generality that the constant terms
of the Eisenstein polynomials are p mod p2. This assumption will be made
throughout the paper.

3 Invariants of K

Let π be an element of K with valuation 1
p and minimal polynomial xp −∑p−1

i=1 aix
i + a0p, where a0 ≡ 1. v(ai) ≥ 1 because the polynomial is Eisenstein.

We have two cases, depending on the coefficients of the minimal polynomial.
If there is some i with 1 ≤ i ≤ p − 1 such that v(ai) = 1, then let λ

be the least such i. Then f(x) = xp − · · · − ωpxλ − · · · − ap, where the the
terms in the ‘· · · ’ on the left have coefficients divisible by p and those in the
‘· · · ’ on the right have coefficients divisible by p2. In particular, when we write
0 = f(π) = πp − · · · − ωpπλ − · · · − ap, the three terms written have smaller
valuation than all omitted terms.

It is also possible that all coefficients ai with a ≤ i ≤ p− 1 are divisible by
p2. Then f(x) = xp − · · · − ap.

π is a root of f(x), but there are p−1 other roots. Let π0 = π, π1, ... , πp−1

be the roots of f(x). We can factor f(x) as (x− π)(x− π1) · · · (x− πp−1).
Let ∆i = π − πi.

Lemma 1. All the ∆i have the same valuation.

Proof. Since πp ≡ p ≡ (πi)
p = (π+∆i)

p = πp(1+ ∆i

π )p, 1+ ∆i

π ≡ 1, v(∆i

π ) > 0,
v(∆i) > v(π).

By Taylor’s expansion we have

f(πi) = f(π +∆i) =

p∑
j=0

f (j)(π)

j!
∆j

i

Separating out the the first, second, and last terms of the sum we have

f(πi) = f(π) + f ′(π)∆i +

p−1∑
j=2

f (j)(π)

j!
∆j

i +∆p
i

since f (p)(x) = p!. Since f(π) = f(πi) = 0, we have

0 = f ′(π)∆i +

p−1∑
j=2

f (j)(π)

j!
∆j

i +∆p
i

Consider the valuation of the terms in the summation. Terms of f (j)(π) are those
of f ′(π) multiplied by an integer and divided by j − 1 powers of π. Thus the
valuation of each term of f (j)(π) is (j−1)v(π) less than the corresponding term
of f ′(π), and some terms have disappeared (since derivatives eliminate constant
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terms. Since the valuation depends only on the valuation of the minimum term,
v(f (j)(π)) ≥ v(f ′(π))− (j − 1)v(π). Then

v(
f (j)(π)

j!
∆j

i ) = v(f (j)(π))+jv(∆i) ≥ v(f ′(π))−(j−1)v(π)+(j−1)v(∆i)+v(∆)i

> v(f ′(π))− (j − 1)v(π) + (j − 1)v(π) + v(∆)i = v(f ′(π)∆i)

Thus the valuation of each term in the summation is greater than the valuation
of f ′(π)∆i. Then for the sum of the terms to be zero, there must be more than
one term with the minimum valuation, so v(f ′(π)∆i) = v(∆p

i ), and f ′(π)∆i ≡
−∆p

i . Then v(∆i) =
v(f ′(π))

p−1 , so all the ∆is have the same valuation.

Furthermore, we can find what this valuation is.
We have

f ′(π) = pπp−1 +

p−1∑
i=1

iaiπ
i−1

Taking valuations, we have

min(v(pπp−1), ..., v(iaiπ
i−1), ...) = v(f ′(π))

The value of the minimum depends on which case we have. In case 1 this is
v(λaλπ

λ−1) = v(λωpπλ−1) = 1 + λ−1
p and in case 2 this is v(pπp−1) = 1 + p−1

p .

Thus in case 1 we have v(∆i) = v(f ′(π))
p−1 = λ+p−1

p(p−1) and in case 2 we have

v(∆i) =
2p−1
p(p−1) . Define C by C

p(p−1) = v(∆i) − V (π), so that C = λ in case 1

and C = p in case 2.
This implies that the valuations of the discriminants of the polynomials are

λ+ p− 1 and 2p− 1, respectively, in the two cases.
We can generalize this to other elements of K:

Lemma 2. For all A ∈ K, for any conjugate A′ ̸= A of A, v(A′ − A) >
C

(p−1)p + v(A) if v(A) is an integer and v(A′ −A) = C
(p−1)p + v(A) otherwise.

Proof. Because K is a degree p extension, write A =
∑p−1

i=0 aiπ
i. The valuations

of the ais are integers and the valuation of π is 1
p , so all these terms have different

valuation, so v(a) = min0≤i≤p−1(v(aiπ
i)). We have that A′ =

∑p−1
i=0 aiπ

i
j for

some j. Then we have A′ −A =
∑p−1

i=0 ai(π
i
j − πi).

πi
j − πi = (π +∆j)

i − πi ≡ πi + iπi−1∆j − πi = i∆jπ
i−1

where the congruence is justified because terms with more powers of ∆j in the
binomial expansion of (π +∆j)

i have higher valuation. Then

v(ai(π
i
j − πi)) = v(ai(∆jπ

i−1)) = v(aiπ
i) + v(∆j)− v(π) = v(aiπ

i) +
C

p(p− 1)

4



These valuations are distinct for all i, so

v(A′ −A) = v(

p−1∑
i=0

ai(π
i
j − πi)) = min

1≤i≤p−1
(v(aiπ

i) +
C

p(p− 1)
) =

min
1≤i≤p−1

(v(aiπ
i)) +

C

p(p− 1)
≥ v(A) +

C

p(p− 1)

The minimum does not include the i = 0 term because this term is the same for
A and A′, and thus is cancelled in the subtraction. Thus we have equality exactly
when the minimum valuation is achieved by the a0 term, so that v(A) = v(a0)
is an integer.

Theorem 1. C, v(∆i), and λ depend only on K, not on which Eisenstein
polynomial f we choose to generate K. Thus these are invariants of K.

Proof. Let α be another element of K of valuation 1
p . The other roots αi of

its minimal polynomial are its conjugates. Thus v(∆′
i) = v(αi − α) = C

p(p−1) +

v(αi) =
C

p(p−1) +
1
p . This determines the values of C and λ for α by the proof

of the valuation of the ∆is, and these values are the same as those for π.

Furthermore, in case 1, the value of ω mod p is also determined by K.

Lemma 3. For all A in K that are not in Qp, the minimal polynomial f(x) =∑p
i=0 aix

i of A has v(ai) ≥ C
p + (p− i)v(A) for all i with 1 ≤ i ≤ p− 1.

Proof. First suppose A has non-integer valuation r
p . Then

f(x) = (x−A)(x−A1) · · · (x−Ap−1)

so by the product rule

f ′(x) = (x−A1) · · · (x−Ap−1) + (x−A)((x−A2) · · · (x−Ap−1))
′

where Ai is a conjugate of A (another root of its minimal polynomial). When
we take f ′(A), the second term cancels, so we have

f ′(A) = (A−A1)(A−A2) · · · (A−Ap−1)

Thus we have that

p∑
i=1

iaiA
i−1 = f ′(A) = (A−A1) · · · (A−Ap−1)

Taking valuations,

v(pAp−1 +

p−1∑
i=1

iaiA
i−1) = v(A−A1) + · · ·+ v(A−Ap−1)
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Because all the terms in the sum in the left side have different valuations, the

left side equals min(1 + (p−1)r
p , ..., v(iaiA

i−1), ...). By Lemma 2 the right side

equals C
p + (p− 1)v(a) = C

p + (p−1)r
p . Thus for all i

C

p
+

(p− 1)r

p
≤ v(iaiA

i−1) = v(ai) +
(i− 1)r

p

so

v(ai) ≥
C + (p− 1)r

p
− (i− 1)r

p
=

C + (p− i)r

p
=

C

p
+ (p− i)r.

Now suppose A has integer valuation. Separate A into its ‘constant’ and
‘π’ terms, so that we have A = b + B, where b ∈ Qp and B has noninteger
valuation. We have v(A) = min(v(b), v(B)) = v(b), since it must be an integer.

The minimal polynomial of B is f(x) = xp −
∑p−1

i=1 bix
i + b0, where the v(bi) ≥

C
p + v(B). The minimal polynomial of A is then

f(x−b) = (x−b)p−
p−1∑
i=1

bi(x−b)i+b0 = xi+

p−1∑
i=1

(
p

i

)
xibp−i+1−

p−1∑
i=1

bi(x−b)i+b0

using the binomial theorem to expand (x−b)p. Because the binomial coefficient(
p
i

)
is divisible by p, the valuation of the coefficient of xi in the summation on the

left is 1+(p−i)v(b) ≥ C
p +(p−1)v(A). If we expand bi(x−b)i with the binomial

theorem in the sum on the right, we get sums of
(
i
j

)
bib

jxi−j , so the coefficient

of xi−j has valuation v(
(
i
j

)
bib

j) = v(bi) + jv(b) ≥ C
p + (p − i)v(B) + jv(b) >

C
p + (p − i)v(A) + jv(A) = C

p + (p − (i − j))v(A). Thus when we collect the

terms, all coefficients ai of xi with 1 ≤ i ≤ p − 1 have valuation at least
C
p + (p− i)v(A).

Define N(α) as (−1)p = −1 (here we use that p is odd) times the constant
term of the minimal polynomial of alpha if α ̸∈ Qp, and N(α) = αp if α ∈
Qp. This is called the norm of α. Then N(α) is the product of α and all its
conjugates. A key fact is that the norm is multiplicative: N(αβ)=N(α)N(β).

Let f(x) = xp −
∑p−1

i=1 aix
i − a0 be the minimal polynomial of α. Then

αp −N(α) = αp − a0 = α− a0 − f(α) =

p−1∑
i=1

aiα
i

By Lemma 3, the ais have positive valuation (and thus valuation at least 1), so
v(αp −N(α)) ≥ 1 if α ̸∈ Qp. If α ∈ Qp then v(αp −N(α)) = v(0) = ∞.

Now we can prove the following.

Theorem 2. The value of ω mod p is the same for all Eisenstein polynomials
with a root in K; that is, ω (mod p) is also an invariant of K.
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Proof. Let π and π1 be in K with valuation 1
p and minimal polynomials xp −

· · · − ωpxλ − · · · − pa0 and xp − · · · − ω1px
λ − · · · − pb0, respectively, where

a0 ≡ 1 ≡ b0, so that πp ≡ p ≡ πp
1 , π ≡ π1, π1 = uπ, u a unit congruent to 1.

We have
πp −N(π) = πp − pa0 ≡ ωpπλ

πp
1 −N(π1) = πp

1 − pb0 ≡ ω1pπ
λ
1 ≡ ω1pπ

λ

and

v(ωpπλ) = 1 +
λ

p
= v(ω1pπ

λ
1 )

However, we have

pπλ(ω1 − ω) = pπλω1 − pπλω ≡ pπλ
1ω1 − pπλω1 = (πp

1 −N(π1))− (πp −N(π))

(πp
1−N(π1))−(πp−N(π)) = (πp−N(π))((

π

π1
)p−1)+N(π)((

π

π1
)p− N(π)

N(π1)
) =

(πp −N(π))(up − 1) +N(π)(up −N(u))

v((πp −N(π))(up − 1)) = v((up − 1)) + v(ωpπλ) = v((up − 1)) + 1+
λ

p
> 1 +

λ

p

v(N(π)(up −N(u))) = v(N(π)) + v(up −N(u)) ≥ 1 + 1 > 1 +
λ

p

Thus

v(pπλ(ω1 − ω)) > 1 +
λ

p
= v(pπλω1)

so ω ≡ ω1.

4 Canonical Polynomials

Now we have proved that all polynomials defining an extension have the same
value of λ and the values of ω are congruent mod p. We will now prove

Theorem 3. Each extension can be generated by a canonical polynomial of the
form

xp − ωpxλ − p

xp − ωpxp−1 − p(1 + ap)

xp − p(1 + ap)

with ω and λ, and a integers with 1 ≤ ω ≤ p− 1, 1 ≤ λ < p− 1, 0 ≤ a ≤ p− 1.
Furthermore, the extensions in the first and third cases generate distinct

extensions.

The rest of the paper gives the proof of this theorem.
We will use Krasner’s Lemma:
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Lemma 4. For irreducible polynomial f(x) in Qp[x] with roots α, α1,...,αn−1,
if β ∈ Ω satisfies v(β − α) > v(αi − α) for all i ̸= 0, then Qp(α) ⊂ Qp(β).

First suppose K is an extension generated by f(x) = xp−
∑p−1

i=1 aix
i−ap =

xp − · · · − ωpxλ − · · · − ap. Consider g(x) = xp − ω′pxλ − p, where ω′ is the
integer between 1 and p− 1 congruent to ω. Let π′

0, π
′
1,...,π

′
p−1 be the roots of

g, and let π ∈ K be a root of f . Let π′
i be the root of g closest to π, so that

v(π − π′
i) ≥ v(π − π′

j). Then

(π−π′
0)(π−π′

1) · · · (π−π′
p−1) = g(π) = g(π)−f(π) = (ω′−ω)pπλ−

∑
i ̸=λ

aiπ
i−p(1−a)

The valuation of (ω′−ω)pπλ is greater than 2, since v(ω′−ω) ≥ 1, v(p) = 1,
v(πλ) > 0. The valuation of

∑
i ̸=λ aiπ

i is at least 1 + λ+1
p , since for i < λ we

have v(ai) ≥ 2, and for i > λ we have v(aiπ
i) ≥ 1 = i

p . We have 1 + λ+1
p >

1 +
λ p

p−1

p = 1 + λ
p−1 . Finally, v(p(1− a)) = 1 + v(1− a) ≥ 2 > 1 + λ

p−1 . Thus

v((π − π′
0)(π − π′

1) · · · (π − π′
p−1)) > 1 +

λ

p− 1

so

v(π − π′
i) >

1 + λ
p−1

p
=

1

p
+

C

p(p− 1)
= v(π′

i − π′
j)

g is Eisenstein and thus irreducible over Qp, so by Krasner’s Lemma g has
a root in K, and thus g generates K.

If we have λ = p−1, let 1+a′p congruent to a mod p2, g(x) = xp−ω′pxp−1−
p(1 + a′p), other notation as before. Then we have

(π − π′
0)(π − π′

1) · · · (π − π′
p−1) = g(π) = g(π)− f(π) =

= (ω′ − ω)pπp−1 −
∑
i<λ

aiπ
i − p(1 + a′p− a)

v((ω′ − ω)pπp−1) ≥ 2 + p−1
p > 2, so the first term has valuation greater than

2. The ai have valuation at least 2, so the summation has valuation greater
than 2. Finally, v(p(1 + a′p− a) = 1 + v(1 + a′p− a) ≥ 3, so the last term has
valuation greater than two. Then

v((π − π′
0)(π − π′

1) · · · (π − π′
p−1)) > 2 = 1 +

λ

p− 1

so

v(π − π′
i) >

1 + λ
p−1

p
=

1

p
+

C

p(p− 1)
= v(π′

i − π′
j)

so again g generates K.
For an extension with case 2, let π generate the extension K. We need to

eliminate the linear term of the minimal polynomial of π. Let α = 1
1
π+

a1
pa0

=
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π
1+π

a1
pa0

, where a1 is the linear and a0 the constant term of the minimal polyno-

mial of π. Then the minimal polynomial of α has no linear term, v(α) = 1
p , and

α ≡ π. In terms of operations on the coefficients, the definition of α represents
reversing the order (by taking 1

π ), eliminating the xp−1 term (adding a1

pa0
), and

then reversing the order again. Then we can let f(x) be the minimal polynomial
of α with coefficients as in previous cases. Let 1 + a′p congruent to a mod p2,
g(x) = xp − p(1 + ap), other notation as before. Then

(α−π′
0)(α−π′

1) · · · (α−π′
p−1) = g(α) = g(α)− f(α) =

p−1∑
i=2

aiα
i− p(1+ a′p− a)

We have v(aiα
i) = v(ai) + iv(α) ≥ 2 + i

p ≥ 2 + 2
p , where v(ai) ≥ 2 comes from

the fact that f is a case 2 Eisenstein polynomial. We have v(p(1 + a′p− a)) =
1 + v(1 + a′p− a) ≥ 3 > 2 + 2

p . Then

v((α− π′
0)(α− π′

1) · · · (α− π′
p−1)) ≥ 2+

2

p
= 1+

p+ 2

p
> 1+

p

p− 1
= 1+

C

p− 1

so

v(α− π′
i) >

1 + C
p−1

p
=

1

p
+

C

p(p− 1)
= v(π′

i − π′
j)

so again g generates K.
Thus the first part of the theorem - existence of roots - is proved. What

remains is to show that the first and third classes of polynomials produce distinct
extensions. For class 1, this is easy: each of these polynomials has a different
value of λ or of ω (mod p). Since we have shown that λ and ω (mod p) are
invariants of an extension, adjoining roots of these polynomials must produce
distinct extensions. We have the following result:

Lemma 5. f(x) = xp − pa and g(x) = xp − pb generate the same extension iff
there is u ∈ Qp such that b = aup.

Proof. If f(x) and g(x) generate the same extension, there are π and π′ in K

with f(π) = 0, f(π′) = 0. Let π′ = π(1+Y ), v(Y ) > 0. Then (1+Y )p = (π
′

π )p =
b
a . If Y ̸∈ Qp, then (1+Y )p− b

a is the minimal polynomial of Y . The coefficient

of Y in this polynomial is p, so by Lemma 3, 1 = v(p) ≥ C
p + (p − 1)v(Y ) =

1 + (p − 1)v(Y ), so v(Y ) ≤ 0, a contradiction. Thus Y ∈ Qp, b = (1 + Y )pa.
Conversely, if b = aup, then if π is a root of xp − pa then uπ is a root of g(x),
so f(x) and g(x) generate the same extension.

We have the following result:
u ≡ 1 in Qp (for odd p) is a pth power iff it is 1 mod p2.

Proof. Suppose kp = u. Then u = kp ≡ k (mod p), so k ≡ 1. Let k = 1 + ap.
Then u = kp = 1 + p(ap) +

(
p
2

)
(ap)2 + ... ≡ 1 (mod p)2, so u is 1 mod p2. Now

suppose u is 1 mod p2. Then let u = 1+ap2. Let f(x) = xp−u. With k = 1+ap,

9



we have f(k) = 1+p(ap)+
(
p
2

)
(ap)2+ ...−1−ap2 =

(
p
2

)
(ap)2+

(
p
3

)
(ap)3+ ... ≡ 0

(mod ()p3), so v(f(k)) ≥ 3 > 2 = 2v(pkp−1) = 2v(f ′(k)), so f has a root by
Hensel’s lemma, and thus u is a pth power. (the reason this does not work for
p = 2 is that the

(
p
2

)
(ap)2 term is not divisible by p3)

Since a
b ≡ 1 (mod p)2 iff a ≡ b (mod p)2 for a, b congruent to 1, we have

that xp − pa and xp − pb generate the same extension iff a and b are congruent
mod p2. Then we have that the polynomials xp − p(1 + ap) for 0 ≤ a ≤ p − 1
each generate a distinct degree p extension of Qp, and all extensions with case 2
are generated by these polynomials. Then the proof of the theorem is complete.

The case that was not fully treated by this paper is the second class of
polynomials. If ω ̸= 1, then a is not necessary, and all extensions are generated
by xp − ωxp−1 − p. If ω = 1 then all values of a produce distinct extensions.
Proofs of this can (I think) be found in Amano’s paper, although the notation
involved is somewhat complicated.

Counting the number of polynomials of each class, we have (p − 1)(p − 2)
in class 1, (p − 2) + (p) in class 2, and p in class 3, for a total of p2 ramified
extensions of Qp of degree p.

The Galois groups of each of these extensions can be computed. For a table of
the canonical polynomials with their parameters along with their Galois groups
and inertia groups, see table 2.1 of the paper describing the local fields database.
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