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1. Introduction to Public-Key Cryptography

In the early 1970’s messages were encoded using a symmetric encryption scheme. In such
schemes the same secret key was used to encode and decode messages. The need to transmit
this key over potentially unsecure network makes symmetric encryption schemes vulnerable
from a security point of view. The RSA (Rivest-Shamir-Adleman) algorithm, first described
in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman of the Massachusetts Institute
of Technology. This algorithm was an assymetric encryption scheme which relies on two
mathematically linked keys, a public key and a private key. For example, a receiver, Alice,
chooses two prime numbers p, q and n = pq. The Euler-totient function ϕ(n) = (p−1)(q−1).
Alice chooses a public key e < ϕ(n) such that e is relatively prime to ϕ(n). The private key
d = e−1 (mod ϕ(n)). Since e is relatively prime to ϕ(n), its inverse d exists. Alice now
shares the pair (n, e) with Bob. Bob encrypts a message M to Alice as C = M e (mod n). It
can be shown that when Alice decrypts the message as Cd (mod n) she recovers the original
message. The security of the system relies on the difficulty in factoring n for large primes p
and q. Without factoring n the private key d cannot be obtained to decrypt the message.
Such functions in computer science are known as one way functions. A one way function in
computer science is a function that is easy to compute on any given input, but hard to get
an inverse of. In this case, given two primes p and q we can easily find n = (p − 1)(q − 1)
but its very difficult to find p, q given n.

2. Lattice Based Cryptosystems

The security of traditional assymetric cryptography schemes is based on the fact that
given two primes p and q we can easily find n = (p− 1)(q − 1) but its very difficult to find
p, q given n. In other words factorization of large integers is a difficult problem. Advances in
quantum computing and quantum algorithms have made the problem of finding inverses of
one way functions relatively easy. For example an integer n can be factored on a quantum
computer using Shor’s algorithm in log(n) time. Lattice-based cryptography is expected
to be resistant to attacks by both classical and quantum computers. This is the reason to
study cryptography schemes based on lattice constructions. The longest vector problem and
closest vector problems are p-adic analogues of shortest vector problems and closest vector
problems in lattices of Euclidean space. These problems can be used to create a public key
cryptosystem. I will review one such scheme proposed by Deng et-al.

3. Key Definitions

This section goes over some key definitions and terms used in this report.

• Definition 1.1 p - prime
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• Definition 1.2 f(x) - an irreducible polynomial in Qp of degree n
• Definition 1.3K is an extension field of Qp of degree n.
• Definition 1.4α1, α2, . . . , αm ∈ K are Qp-linearly independent vectors.
• Definition 1.5L(α1, α2, . . . , αm) = {

∑m
i=1 aiαi|ai ∈ Zp, 1 ≤ i ≤ m} is a lattice with

basis vectors (α1, α2, . . . , αm). m and n are called the rank and dimension of the
lattice respectively.

• Definition 1.6Given a lattice L in K we recursively define λ1, λ2, . . . as λ1 =
max1≤i≤m |αi|p and λj+1 = max{|x|p |x ∈ L, |x|p < λj} for j ≥ 1. By definition
λ1 > λ2 > λ3 > . . . and limj→∞ λj = 0.

• Definition 1.7 Given a lattice L in K. Let t ∈ K − L be a target vector, Define
s positive real numbers µ1 > µ2 > µ3, . . . µs as {µ1, µ2, . . . , µs} = {|t − v|p, v ∈ L}.
Thus µmax = µ1 and µmin = µs

4. Longest Vector Problem (LVP)

Given a lattice L(α1, α2, . . . , αm) in K. Let α = {
∑m

i=1 aiαi|ai ∈ Zp, 1 ≤ i ≤ m} be an
element of L. Now

|α|p = |
m∑
i=1

aiαi|p

≤ max
1≤i≤m

(|aiαi|p)

≤ max(|αi|p)

This means that the length of any element in L is bounded above and as the valuation group
of K is discrete the elements of L can take discrete values and have an upper bound. We
recursively define λ1, λ2, . . . as

λ1 = max
1≤i≤m

|αi|p

λj+1 = max{|x|p |x ∈ L, |x|p < λj} for j ≥ 1

By definition λ1 > λ2 > λ3 > . . . and limj→∞ λj = 0. The Longest Vector problem can now
be defined as the problem of finding v ∈ L such that |v|p = λ2. For a given j the algorithm
takes O(pm(j−1)) p-adic absolute value computations.

5. Closest Vector Problem (CVP)

Given a lattice L(α1, α2, . . . , αm) in K, and a target vector t ∈ K −L such that |t|p ≤ λ1.
Define s positive real numbers

µ1 > µ2 > µ3 > . . . µs as {µ1, µ2, . . . , µs} = {|t− v|p, v ∈ L}

Basically we take the first s largest distances of elements of L from t. Thus µmax = µ1 and
µmin = µs The closest vector problem (CVP) is to find a lattice vector v ∈ L satisfying
|t− v|p ≤ µmin
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6. Solving LVP and CVP with Orthogonal Bases

6.1. Orthogonal bases. If V is a left vector space over Qp of finite dimension n > 0 and
|.| be a norm on V . α1, α2, . . . , αn is called an orthogonal basis of V over Qp if V can be
expressed as a direct sum of n 1-dimensional subspaces Vi (1 ≤ i ≤ n) spanned by αi such
that ∣∣∣∣∣

n∑
i=1

vi

∣∣∣∣∣ = max
1≤i≤n

|vi|,∀vi ∈ Vi, i = 1, 2, . . . , n

6.2. Solving LVP with orthogonal bases. Suppose we want to find vj ∈ L satisfying
|vj|p = λj. Let L(α1, α2, . . . , αm) be a lattice where α1, α2, . . . , αm are orthogonal bases.
Also without loss of generality assume |α1|p > |α2|p · · · > |αm|p. For any vector v in L, since
the bases are orthogonal and the lengths in L are discrete the set of discrete lengths in L
can be represented as {logp(|αi|p) − k | i = 1, 2, . . . ,m, k = 0, 1, 2, . . . }. If these valuations
are considered in descending order then λ1 = |α1|p and λj = logp(|αi|p)− k for some i. The
main idea is that we need to compute m p-adic computations when the bases are orthogonal.
Also the vector vj whose length is λj can be written as vj = pkαi

6.3. Solving CVP with orthogonal bases. Let the target vector t ∈ K − L be such
that |t|p ≤ λ1. Let V (⊃ L) be a k-dimensional (with k ≥ m) Qp-vector subspace of
the field K with α1, α2, . . . , αm, αm+1, . . . , αk being an orthogonal basis of V . Let t ∈ V

be represented as t =
∑k

i=1 biαi, bi ∈ Qp, i = 1, 2, . . . , k and a lattice vector v ∈ L be
v =

∑m
i=1 aiαi, ai ∈ Zp, i = 1, 2, . . . ,m Now since the bases are orthogonal

|t− v|p = max{ |bi − ai|p · |αi|p (1 ≤ i ≤ m),

|bjαj|p (m+ 1 ≤ j ≤ k)}

Consider two cases

• Case 1 when bi ̸∈ Zp. In this case |bi − ai|p = |bi|p > 1
• Case 2 when bi ∈ Zp. In this case {|bi − ai|p} = {0, p−c |c = 0, 1, 2, . . . }

Let bi ̸∈ Zp for 1 ≤ i ≤ l and bi ∈ Zp for l + 1 ≤ i ≤ m Then for all v ∈ L the distance from
the target vector is the maximum of three computations as given below

{|t− v|p} = {max{ |bi|p|αi|p (1 ≤ i ≤ l);

|bjαj|p (m+ 1 ≤ j ≤ k);

p−cu · |αu|p, cu = 0, 1, 2 . . . (l + 1 ≤ u ≤ m)}}

We can show that we just need O(n) p-adic computations to find closets vector to t in the
lattice L. The computation time is exponential if we do not start with an orthogonal basis.
Key Theorem on Solving CVP with Orthogonal Bases. Let K be an extension of Qp of
degree n. Given a lattice L(α1, α2, . . . , αm) in K, and a target vector t ∈ K − L such
that |t|p ≤ λ1. V (V ⊃ L) be a k−dimensional Qp-vector subspace of the field K. Let
α1, α2, . . . αm, αm+1, . . . , αk (k ≥ m) be an orthogonal basis for V . Let t ∈ V . There is an
algorithm to find vi ∈ L satisfying |t − vi|p = µi for each 1 ≤ i ≤ s. This algorithm takes
O(n) p-adic absolute value computations of elements of K.
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7. Implementation of Public Key Cryptosystem

We first start with some notations

• f(x) = xn + f1x
n−1 + · · · + fn−1x + fn ∈ Zp[x] be a non reducible polynomial such

that |fn|p = p−1 and |fi|p < 1 for 1 ≤ i ≤ n− 1
• K is a totally ramified extension field of degree n > 1
• θ is a root of f(x) = 0.
• OK = x ∈ K, |x|p ≤ 1 is a discrete valuation ring
• ζ ∈ OK such that Zp[ζ] = Zp[θ] → K = Qp(ζ)
• F (x) ∈ Zp[x] be a minimum pol;ynomial of ζ over Qp that is also monic and of degree
n

• ji ∈ Z are n non-negative integers such that the ji (mod n) for 1 ≤ i ≤ n are distinct
• αi = θji (1 ≤ i ≤ n) are linearly independent over Qp and form an orthogonal basis.

Chose 0 < m ≤ n and δ ∈ R+ Choose a matrix A ∈ GLm(Zp) andβ1
...
βm

 = A×

α1
...

αm


The matrix A is chosen such that the vectors β1, . . . , βm have the same length or almost the
same length.

Public Key Generation Bob publishes a public key is set to (F (x), δ, (β1, β2, . . . , βm))

Private Key Generation Bob keeps a private key set to (A, (α1, α2, . . . , αm))

Encryption Let (a1, a2, . . . , am) where each ai ∈ {0, 1, . . . , p − 1} be the plaintext that
is to be encoded. Alice chooses randomly r ∈ K with |r|p < p−δ and computes a ciphertext
C = a1β1 + a2β2 + · · ·+ amβm + r ∈ K This ciphertext is sent to Bob

Decryption Bob uses the orthogonal basis (α1, α2, . . . , αn). He then finds the lattice vector
v ∈ L that is closest to C. This lattice vector can be found computationally quickly as long
as the bases are orthogonal. Thus

v = b1α1 + b2α2 + · · ·+ bmαm, bi ∈ Zp

The original plaintext can be recovered as (b1, . . . , bm) · A−1 (mod p). Since A ∈ GLm(Zp)
its inverse exists.

Correctness The key idea is that we generate a ciphertext C from a plaintext P that
is a distance p−δ from the vector A× P (mod p). With the right constraints on δ the CVP
gets us back the solution A × P that is the closest vector to the target C. P can now be
retrieved from A × P using A−1 × A × P . As long as ji ≤ δn for all 1 ≤ i ≤ m we can
guarantee the uniqueness of the closest vector solution and therefore recover the original
plaintext.
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8. Conclusion

Traditional public key cryptography schemes are based on generating keys from factor-
ization of large integers. With advances in quantum computing and algorithms, such cryp-
tography systems might not be very secure as integer factorization is a linear time problem
with quantum algorithms. Encoding using p-adic space offers an alternate to such tradi-
tional schemes. The Longest Vector Problem (LVP) and Shortest Vector Problem (CVP)
in p-adic lattices are p-adic analogues of the shortest vector problem and Closest Vector
Problem in lattices in Euclidean space. A public key cryptography scheme based on Closest
Vector Problem (CVP) in p-adic lattices is studied in this report. Several open topics remain
to be solved in this study. For example, it is not yet known if LVP and CVP are NP-hard
problems. However, this is a promising approach, that utilizes the properties of p-adic spaces
to implement a public key cryptography system.
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