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Abstract

In this paper, we focus on profinite Fibonacci numbers, looking for
values of n such that the nth number of the Fibonacci sequence is n. We
find the 11 such fixed points of the sequence.

1 Introduction

You may be excited when you find 3 solutions to Fn = n just by glancing over
the initial terms of the Fibonacci sequence in Z. After all, F0 = 0, F1 = 1, and
F5 = 5. But your happiness is short-lived since the other 8 nontrivial points
lie somewhere else—these are the primary focus of this paper. Recall that F
admits a unique continuous extension Ẑ → Ẑ, called the Fibonacci map—it is
here where we’ll find our points.

Recall that for two numbers to be equal in Ẑ, they must be congruent mod
a large enough k. In other words, we know that Fs ≡ s (mod n!) where s =
(...s4s3s2s1)!, the factorial base representation that you’re no doubt familiar
with.

We introduce a sister sequence of the Fibonacci numbers: the Lucas num-
bers, recursively defined as Ln = Ln−1 + Ln−2 with starting values L0 = 2 and
L1 = 1. Indeed they share many properties with the Fibonacci sequence.

We now indulge ourselves with a well-known identity of the Fibonacci se-

quence, where ϕ represents 1+
√
5

2 and α represents 1−
√
5

2 , roots of x2 − x − 1.
Then,

Fn =
ϕn − αn

ϕ− α
.

It can be proved rather easily using induction.

2 Needed Preliminaries

Using the representation of Fn in terms of ϕ and α and other logarithmic rep-
resentations, we have

Fn!

n!
=

ϕn! − αn!

n!(ϕ− α)
=

1

ϕ− α
(
ϕn! − 1

n!
− αn! − 1

n!
).
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Thus, taking the limit,

lim
n→∞

Fn!

n!
=

1

ϕ− α
(log(ϕ)− log(α)).

Since log(ϕ)+log(α) = log(ϕα) = log(−1) = 0, we know that log(ϕ) = −log(α).
Then we can create the following definition.

Definition 2.1. We define l as:

l =
log(ϕ)

ϕ− α
= lim

n→∞

Fn!

n!
.

We’ll use l continuously throughout the paper.
The following lemma plays an integral role in the ultimate theorem, so we

introduce it, though its proof requires some previous number-theoretic results,
which we do not wish to include for fear of distracting the reader from the main
discussion.

Lemma 2.1. If n ≡ 1 mod 5, then gcd(n+1, 1−Lsn
Fn!

2n! ) = 5k for some integer
k.

Another beautiful property is that we can create a power series expansion
of Fs around s0, detailed by the following lemma.

Lemma 2.2. If sn ∈ Ẑ and l is as defined earlier, then

Fsn ≡
∑
t≥0

5tl2t+1Ls0

(s− sn)
2t+1

(2t+ 1)!
+ 5tl2tFsn

(s− sn)
2t

(2t)!
(mod m).

This final lemma is perhaps the most important of them all, restricting the
values we must consider when evaluating potential solutions to Fn = n that are
profinite integers, which inconveniently extend indefinitely to the left.

Lemma 2.3. If we let a nonzero s be a fixed point of F , then

v5(1− lLs) = j,

for some 1 ≤ j ≤ 3.

Its proof mainly makes use of the previous two lemmas, Lemma 2.1 and 2.2.

3 The 11 Points

Now we prove a theorem that we regard as the centerpiece of our exploration,
from which the identities of the fixed points will directly sprout.
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Theorem 3.1. Let n ≥ 5 be an integer and 1 ≥ j ≥ 3 be the integer satisfying
j = v5(1− lLsn). Then,

Fsn − sn
5jn!

≡ k
1− lLsn

5j
(mod n+ 1),

for all n ≥ 5j. Furthermore, if we take n ≥ 15, then k is uniquely determined
by the congruence.

Proof. Recall that we need to find such a k here such that Fsn+1
≡ sn+1 mod

n!; we instead impose a stricter congruence Fsn+1 ≡ sn+1 (mod 5jn!). Now
we check the conditions for Lemma 2.2, which are indeed satisfied. Therefore,
looking at the power series of F ,

Fsn ≡
∑
t≥0

5tl2t+1Lsn

(kn!)
2n+1

(2t+ 1)!
+ 5tl2tFsn

(kn!)
2t

(2t)!
(mod 5j(n+ 1)!).

When j = 3, it’s apparent that all terms beyond the third disappear, so the
same applies for j < 3. Thus, we can rewrite this congruence more simply as:

Fsn+1
≡ lLsnkn! + Fsn + C +D (mod 5j(n+ 1)!),

where

C = 5l3Lsn

(kn!)3

6
+ 5l2Fsn

(kn!)2

2
, D = 25l5Lsn

(kn!)5

120
+ 25l4Fsn

(kn!)4

24
.

Notice that 5l(kn!)2 divides both C and D and after some calculation that
5l(kn!)2 ≡ 0 (mod 5j(n + 1)!) if n ≥ 5j. Then, we can further simplify our
congruence to:

Fsn+1
≡ lLsnkn! + Fsn (mod 5j(n+ 1)!)

of course only when n ≥ 5j. Now we’ll use substitutions to prove the theorem.
Just recall that Fsn+1

≡ sn+1 ≡ kn! + sn (mod 5j(n + 1)!),. Then, combining
with our simplified congruence, we have

1− lLsn

5j
kn! ≡

kn! + Fsn − Fsn−1

5j
≡ Fsn − sn

5j
(mod (n+ 1)!).

We divide everything by n!, and we’re done. By Lemma 2.1, gcd(1− lLsn , n+1)
is at least a power of 5 and at most a power of 5j . Thus, for all n ≥ 15 ≥ 5j,

gcd(
1− lLsn

5j
, n+ 1) = 1.

We’ve proved the uniqueness portion of the theorem i.e. k is uniquely deter-
mined by the congruence after the 14th digit.
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So we only need worry about the first 14 digits of the fixed points, and how
many ways we can create numbers that satisfy all the conditions. Combining
with the uniqueness of k when n does not leave a remainder of 4 (mod 5), we
only consider the 4th, 9th, and 14th digits, each of which admits 5 possibilites
for k that satisfies the congruence. Computationally, then these are the only 11
possibilities.

z1 = (..., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)!,

z2 = (..., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)!,

z3 = (..., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1)!,

z4 = (..., 11, 2, 9, 0, 10, 0, 7, 1, 4, 1, 1, 0, 0, 1)!,

z5 = (..., 8, 11, 1, 3, 3, 4, 7, 1, 4, 1, 1, 0, 0, 1)!,

z6 = (..., 6, 5, 6, 5, 7, 8, 7, 1, 4, 1, 1, 0, 0, 1)!,

z7 = (..., 8, 0, 7, 3, 3, 9, 5, 3, 1, 2, 2, 0, 0, 1)!,

z8 = (..., 12, 8, 5, 2, 4, 4, 0, 0, 0, 0, 0, 0, 2, 1)!,

z9 = (..., 10, 2, 10, 4, 8, 8, 0, 0, 0, 0, 0, 0, 2, 1)!,

z10 = (..., 11, 11, 11, 2, 4, 8, 7, 1, 4, 1, 1, 0, 2, 1)!,

z11 = (..., 3, 11, 3, 11, 0, 9, 1, 6, 2, 4, 4, 0, 2, 1)!.

Although there are several other profinite solutions to Fs ≡ s (mod 15!), all
of them violate some component of Theorem 3.1, as we can computationally
verify.

We conclude our exploration into profinite Fibonacci numbers by offering
a striking graphic just for recreation, created by Willem Jan Palenstijn. The
Fibonacci function Ẑ → Ẑ is on display, where every profinite integer of the
form (...c3c2c1) =

∑
i≥1 cii! is represented as

∑
i≥1

ci
(i+1)! . Therefore, rather

cleverly, we can show the entirety of the graph {(s, Fs) : s ∈ Ẑ} just within a
unit square. Then, the points that intersect with the y = x diagonal, green in
color, are special: indeed they are the 11 values of n where Fn = n.

4



4 References

We simply reworked the important proofs, but much of the intellectual genius
we found in these resources written by these fabulous people, to whom we ex-
press all our gratitude.

[1] H.W. Lenstra, Jr. ”Profinite Fibonacci Numbers.” Mathematical Insti-
tute of University of Leiden, University of Leiden Press, Netherlands, 2005.

[2] D. Hokken. Profinite Number Theory. Bachelor Thesis, Utrecht Univer-
sity, Netherlands, 2018.

5


