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Abstract

In this paper, we focus on profinite Fibonacci numbers, looking for
values of n such that the nth number of the Fibonacci sequence is n. We
find the 11 such fixed points of the sequence.

1 Introduction

You may be excited when you find 3 solutions to F,, = n just by glancing over
the initial terms of the Fibonacci sequence in Z. After all, Iy = 0, F; = 1, and
F5 = 5. But your happiness is short-lived since the other 8 nontrivial points
lie somewhere else—these are the primary focus of this paper. Recall that F
admits a unique continuous extension 7 — Z, called the Fibonacci map—it is
here where we’ll find our points.

Recall that for two numbers to be equal in Z, they must be congruent mod
a large enough k. In other words, we know that Fy = s (mod n!) where s =
(...848382581)1, the factorial base representation that you’re no doubt familiar
with.

We introduce a sister sequence of the Fibonacci numbers: the Lucas num-
bers, recursively defined as L, = L,,_1 + L, _o with starting values Ly = 2 and
L1 = 1. Indeed they share many properties with the Fibonacci sequence.

We now indulge ourselves with a well-known identity of the Fibonacci se-

quence, where ¢ represents 1+T\/g and « represents 1_2‘/5, roots of 2 — x — 1.
Then,
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It can be proved rather easily using induction.

2 Needed Preliminaries

Using the representation of F;, in terms of ¢ and « and other logarithmic rep-
resentations, we have

Fn! _ ¢nl 7Oén! 7 1 ¢n! -1 an! -1
ﬁin!w—a)iqb—a( B

).

n! n!



Thus, taking the limit,
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Since log(@) +log(a) = log(pa) = log(—1) = 0, we know that log(¢) = —log(a).
Then we can create the following definition.

Definition 2.1. We define [ as:
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We'll use [ continuously throughout the paper.

The following lemma plays an integral role in the ultimate theorem, so we
introduce it, though its proof requires some previous number-theoretic results,
which we do not wish to include for fear of distracting the reader from the main
discussion.

Lemma 2.1. Ifn =1 mod 5, then ged(n+1,1— Ly 5;;;) = 5% for some integer
k.

Another beautiful property is that we can create a power series expansion
of F around sq, detailed by the following lemma.

Lemma 2.2. If s, € Z and l is as defined earlier, then
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This final lemma is perhaps the most important of them all, restricting the
values we must consider when evaluating potential solutions to F;,, = n that are
profinite integers, which inconveniently extend indefinitely to the left.

Lemma 2.3. If we let a nonzero s be a fized point of F, then
U5(1 - lLs) =7,
for some 1 < j < 3.

Its proof mainly makes use of the previous two lemmas, Lemma 2.1 and 2.2.

3 The 11 Points

Now we prove a theorem that we regard as the centerpiece of our exploration,
from which the identities of the fixed points will directly sprout.



Theorem 3.1. Let n > 5 be an integer and 1 > j > 3 be the integer satisfying
j=wvs(1—1Ls,). Then,
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for all n > 5j. Furthermore, if we take n > 15, then k is uniquely determined
by the congruence.

Proof. Recall that we need to find such a k here such that F,  , = sp,41 mod
n!; we instead impose a stricter congruence Fy ., = s,41 (mod 5/n!). Now
we check the conditions for Lemma 2.2, which are indeed satisfied. Therefore,
looking at the power series of F,
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+ 5% F, (mod 5 (n + 1)!).

When j = 3, it’s apparent that all terms beyond the third disappear, so the
same applies for 7 < 3. Thus, we can rewrite this congruence more simply as:

F, . =1Ly kn!+F, +C+D (mod 5/ (n+1)!),

Sn+1
where
kn!)3 (kn!)? (kn!)® (kn!)4
=501, ( 2F, D =25°L, 2514 F, )
C =5l"L,, 5 + 51°F, 5 50° L, 120 + 250°F, o

Notice that 5[(kn!)? divides both C and D and after some calculation that
51(kn!)?2 = 0 (mod 5/(n + 1)!) if n > 5j. Then, we can further simplify our
congruence to:

F
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of course only when n > 5j. Now we’ll use substitutions to prove the theorem.
Just recall that Fy, ,, = s,41 = kn! + s, (mod 57(n + 1)!),. Then, combining
with our simplified congruence, we have

1_ZL kn!+Fs",_an_1 FS
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5 knl = w7 =—5 (mod (n+ 1)!).

We divide everything by n!, and we’re done. By Lemma 2.1, ged(1—1Ls, ,n+1)
is at least a power of 5 and at most a power of 5/. Thus, for all n > 15 > 57,

1—1L,,

ged( 5 ,n+1)=1
We'’ve proved the uniqueness portion of the theorem i.e. k is uniquely deter-

mined by the congruence after the 14th digit. O



So we only need worry about the first 14 digits of the fixed points, and how
many ways we can create numbers that satisfy all the conditions. Combining
with the uniqueness of k when n does not leave a remainder of 4 (mod 5), we
only consider the 4th, 9th, and 14th digits, each of which admits 5 possibilites
for k£ that satisfies the congruence. Computationally, then these are the only 11
possibilities.

(...,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
.,0,0,0,0,0,0,0,0,0,0,0,0,0, 1)y,
.,0,0,0,0,0,0,0,0,0,0,0,0,2,1)y,
2y = (..., 11,2,9,0,10,0,7,1,4,1,1,0,0,1),,
5 = (7 87 117 17 3a 3a 4) 77 17 4a la 17 07 07 1)!7
26 = (7 67 53 67 5> 77 87 73 17 4> ]-7 ]-7 Oa 07 1)!3
z7 =(..,8,0,7,3,3,9,5,3,1,2,2,0,0, 1)y,
zg = (...,12,8,5,2,4,4,0,0,0,0,0,0,2,1),,
z9 = (..., 10,2,10,4,8,8,0,0,0,0,0,0,2, 1)y,
z10 = (., 11,11,11,2,4,8,7,1,4,1,1,0,2,1),,
211 = (...,3,11,3,11,0,9,1,6,2,4,4,0,2,1),.
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Although there are several other profinite solutions to Fs; = s (mod 15!), all
of them violate some component of Theorem 3.1, as we can computationally
verify.

We conclude our exploration into profinite Fibonacci numbers by offering
a striking graphic just for recreation, created by Willem Jan Palenstijn. The
Fibonacci function Z — Z is on display, where every proﬁmte integer of the
form (..czeac1) = 2,5, ¢! is represented as ZZ>1 G- Therefore, rather

cleverly, we can show the entirety of the graph {(s, F,) : s € Z} just within a
unit square. Then, the points that intersect with the y = x diagonal, green in
color, are special: indeed they are the 11 values of n where F;, = n.
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