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1. Body

We start with the definitions of the local function ring:

Definition 1.1. Let Fp be the unique finite field with p elements (which is isomorphic to
Z/pZ. Then the symbol Fp[[x]] represents the ring of formal power series in the variable x,
with coefficients in Fp. The

We thus have elements of the form
∞∑
i=0

aix
i

where ai ∈ Fp.
We are aware of the fact that every element in Zp can be expressed as a power series of the
form:

∞∑
i=0

aip
i

Where ai ∈ {0, 1, 2, . . . , p− 1}
We can think creating a canonical map from Fp[[x]] to Zp by send x to p. However, such a
map wouldn’t be a ring homomorphism as both these fields have different characteristics.
Another reason why a homomorphism doesn’t work out is that in Fp[[x]] doesn’t ”carry
over”, whereas Zp does.
The field of fractions for Fp[[x]] is the field of all Laurent series in Fp (denoted as Fp((x))).
This means that we have elements of the form (where ai ∈ Fp, and k is an integer):

∞∑
i=k

aix
i

This field is also closely related to p-adic numbers, it has a similar representation to Qp.
However, this also does not turn into a homomorphism of fields.
In fact, there exists no homomorphism between Fp[x] (the polynomial ring) and Zp, this is
again due to the carrying over property Zp has.
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We now define the notion of a valuation ring and a discrete valuation ring:

Definition 1.2. An integral domain D is a valuation ring if in it’s field of fractions K, we
must have either x ∈ D or x−1 ∈ D for every x ∈ K.

It turns out that for every valuation ring, we can assign it a valuation:

Theorem 1.3. Let D be an integral domain. Then D is a valuation ring if and only if
there exists a totally ordered abelian group Γ (called the value group) and a valuation
v : K −→ Γ ∪ {∞} such that D is set of x for which v(x) is ≥ 0.

Recall the definition of a valuation:

Definition 1.4. A valuation on a a field K is a totally ordered abelian group Γ and a
function v : K −→ Γ that satisfies the following properties for every x and y in K:

• v(x) = ∞ ⇐⇒ x = 0
• v(xy) = v(x) + v(y)
• v(x+ y) ≥ min{v(x), v(y)}

We first make a remark on how to adjoin ∞ to Γ. We let γ+∞ = ∞ for all γ ∈ Γ∪{∞}.
Also make ∞ the unique maximal element of Γ, meaning that ∞ > γ for all γ ∈ Γ.
Let’s see some examples and non-examples of valuation rings:
Z is not a valuation ring. This is because we can consider elements like 2

3
∈ Q, where neither

2
3
nor 3

2
are integers.

To extend Z to a valuation ring, we pick a prime p and construct the field Z(p) (called the
localization of Z with respect to p).
Elements of Z(p) is the subset of all rational numbers whose denominator in its irreducible
form is not divisible by p.
For example, 31

4
∈ Z(3) but

49
18

/∈ Z(3) as 18 is divisible by 3.

Zp is also a valuation ring. We can prove this using the power series representation, but it’s
easier to use absolute values. If x ∈ Qp, then either |x| ≤ 1 or |x| > 1.
In the former case, we have x ∈ Zp by definition. In the latter case, we have that |x−1| =
|x|−1 < 1, making x−1 an element of Zp.
Let’s now define the notion of a discrete value ring:
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Definition 1.5. A valuation ring D is a discrete valuation ring when Γ = Z (the additive
group of integers).

A discrete valuation can give rise to an absolute value in K, and hence a metric in K.
This can be done by taking an arbitrary α ∈ R>1, and consider the absolute value given by:

|x| = α−v(x)

for every x ∈ K. Note that α−∞ = 0.
Such an absolute value satisfies not only the triangle inequality, but also the ultrametric
inequality, making the metric given by d(x, y) = |x− y| an ultrametric.
Why not denote the absolute value as | · |α? This is because all such absolute values are
equivalent, as they generate the same open sets.

We’ll now define a discrete valuation on Fp((x)).
The definition is simple: take the smallest power with a non-zero coefficient. For example,
if we have the Laurent series f =

∑∞
i=−3(i+ 3)xi, then v(f) = −2.

This definition cannot be applied to the 0 Laurent series, hence just let v(x) = ∞.

Claim 1.6. The absolute value defined above is a discrete valuation

Proof of Claim: 1.6. It’s impossible not to find a smallest power with a non-zero absolute
value coefficient, unless f = 0. Hence the only time v(f) = ∞ is when f = 0.
Consider two Laurent series f and g. The smallest non-zero term of its product fg will be
the the sum of the non-zero terms of f and g.
When f or g = 0, then fg has valuation ∞, and v(f) + v(g) = ∞ + c = ∞ (for some
c ∈ Z ∪ {∞}).
Hence, we have that v(fg) = v(f) + v(g).
Lastly, we observe that when we add f and g, we cannot get a smaller valuation than the
minimum degree of both f and g, as all coefficients before the minimum of f and g’s smallest
degrees is 0.
Hence, we must get that v(f + g) ≥ min{v(f), v(g)}, which means that v is a discrete
valuation. ■

Before we proceed, let’s define the discrete valuation ring, with respect to a discrete
valuation on K.

Definition 1.7. Let K be a field with discrete valuation K. Then the discrete valuation
ring with respect to K is:

OK = {x ∈ K|v(x) ≥ 0}
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For example, we have OQ = Z(p) when we use the valuation vp from number theory on Q.
Also, it’s obvious from the definitions that OFp((x)) = Fp[[x]] (as all power series have smallest
non-zero coefficient at least zero).
Now that we have a discrete valuation on Zp[[x]], we can create an absolute value and hence
a metric on it.
Since we have a ”special” number associated with the ring that is greater than 1 (namely
p), we can let α = p (it doesn’t really matter as all such metrics are equivalent anyway).
I claim that we can construct a homeomorphism to Zp from Fp[[x]] (similarly to Qp from
Fp((x))).

Proof. We actually construct an isometry between the two spaces (meaning that the map
preserves distances).
Isometries are always continuous, just take δ = ϵ in the definition.
We’ll actually use the canonical map described in the first page.
Actually such a map preserves valuations, as the valuation for Zp using the power series is
form has the exact same definition as the one for the formal power series in Fp.
Hence, we’ve shown that Zp and Fp[[x]] are homeomorphic to each other.
A similar proof shows that Qp and Fp((x)) are homeomorphic to one another. ■

We can create the following commutative diagram now:

Fp((x))

Qp Z

vFp((x))ϕ

vQp

where ϕ is the homeomorphism described above.
Let us also discuss about local fields.

Definition 1.8. A topological space X in locally compact if every point x ∈ X has a
compact neighbourhood in X.

Q is not locally compact, as every neighbourhood contains a Cauchy sequence converging
to an irrational number. Hence it’s not complete, and hence not compact.

Definition 1.9. A topological field K with a non-discrete topology is a ⋖⋊⅁⋖℧ℶ⋖ if it is
locally compact as a topological space.

As mentioned before, Q is not a local field.
Note that all topologies that are discrete are locally compact, as one can take a single point
set as the neighbourhood.
This space is complete (as the only Cauchy sequences are constant, which always converge).
This space is also totally bounded, as you can just the singleton set as the finite collection
of open sets of constant radius to cover the neighbourhood.
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Theorem 1.10. Let K be a local field. Then is K is isomorphic to one of the following:

• R
• C
• Finite extensions of Qp for any prime p
• Fq((x)) for some prime power q.
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