SOME STRANGE 3-ADIC IDENTITIES

PRESTON FU

Problem 1 (6625 [1990, 252], Proposed by Nicholas Strauss, Pontificia Universidade Catélica
do Rio de Janeiro, Brazil, and Jeffrey Shallit, Dartmouth College).

If k is a positive integer, let 3"3(%) be the highest power of 3 dividing k. Let 7(n) = Z;:Ol (2;)
for all positive integers n. Prove that
(i) vs(r(n)) = 2vs(n),
(ii) v3(r(n)) = vs (( ")) + 2vs(n).
Solution: (by Don Zagier, University of Maryland, College Park, and Maz-Planck-Insitut fur

Mathematik, Bonn, Germany) If we can prove (ii), (i) immediately follows since vy ((*")) > 0.
The problem statement can be rewritten as follows:

0 (S 00)) = (2(2)) wmen

We provide a proof of (1) and of various other 3-adic identities related to it.
Let us set

i ()
AR
I claim that f(n) = —1 (mod 3)Vn € N, and a few calculations suggest the congruences
n=m (mod3’) = f(n)= f(m) (mod 3*).

This means that the function f : N — Q C Q3 extends to a 3-adic continuous map Zs — —1+ 3Zs.
The range studied by computer (n < 2200) lets one check these congruences for j < 7 = |logs 2200 |
and therefore to interpolate f(n) with accuracy O(3%). In fact, Zagier interpolated values for
negative integers and half-integers, calculating the following:

F = 15D = =1 A8 =~ f (—5) =0 f () ==as (<5) = G-

Below is a result that captures all of his experimental observations:

Theorem 2. The function f extends to a 3-adic analytic function from Zs to —1 + 3Zs. For
n € N, we have

nfl

2) f(—n) = - 2”‘1 Z

k:O

and for n € NU {0} we have

g 1(0-3) e o ()

k=
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Proof. Tt can be checked that f(n) satisfies the following recurrence relation:
(4) 2n+1)2n+2)f(n+1)=1+n’f(n)Vn € N.

The left hand side is zero at n = —1 and n = —%, so we can plug in to find f(—1) = —1, f (—%) =
—4. ((2) and (3) can be proven via induction on n using (4), but we won’t go into detail about
that.) It remains to show the first statement.

Let g(n) = 2nf(n); we show that g extends to a 3-adic analytic function of n, then that z | g(x).
For g, (4) becomes
(5) 22n+1)g(n+1) =2+ ng(n).
We can define rational numbers {a, }nenufoy such that

o0

©) o =S ("),

k=0
If we can show that klim v3(ag) = oo, then (6) will converge 3-adically for all n € Zs, and the
H

desired result will follow. Substituting (6) into (5), we have

2+§(k;+1)ak(kil) - Zn: (2(2k+1)<z> +4(k+1)(l{:il>) as.

k=0 k=0

(=3)"(k1)?
(2k + 1)!
(this can be proven by induction). Indeed, the 3-adic valuation does grow to infinity with &, so

(6) gives the analytic continuation of g.

Comparing coefficients of (Z) for each k, we get 2(2k + 1)ay, = —3kay_1, and thus a; =

. 0o 3k(kD? .
Lemma 3. The series Y ,_, @Ry converges 3-adically to 0.

Assuming the lemma to be true (we won'’t prove it here since it uses beta integrals), we see that

o) = 38 gy = Dl =)=
s 3D
= Rk+1) 2
@) # 3 8) gy ((0 =D =2 ) — (1K),

By the lemma, the first term in (7) has valuation

nl gk ()2 X gk(L1)2 n—2
2

r=n

since vs (%) > 2u3(k!) > 2- % for all k. Also,

n|(n—1(n-=2)-(n—k)—(=1)"k!
and
(—3)"k!

"t Vk>2
(2k+1)!v -7
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so we know by (7) that
g(n) = —g (mod 3u(M+1),
Thus, f(n) = 22 = —1 (mod 3), as desired. O

2n
n—1 (2k
Therefore, we know that f(n) = 22%25;) is a 3-adic unit Vn € N, which implies vs3(f(n)) = 0.

Thus,
(B (B 0) )
—u(£(1) -5 (=())
— wy(r(n)) = vg ((?)) + 2us(n),
as desired. -

The calculations to n = 2200 suggested the further congruence
n=m=0 (mod3) = f(n)=f(m) (mod3¥*),

and with a bit of work with Taylor series, the following (a bit stronger than our lemma from
above), is equivalent to the following statement:

3R (k!)? 1 1
k=0 ’
converges 3-adically to 0, where o, denotes the second elementary symmetric sum.

Conjecture 4. The series
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