
THE p-ADIC SOLENOID

NEEL MURTHY

1. Definitions and examples

We’ll start with some preliminary definitions. See [4] and [6] for more information about them.

Definition 1.1. A group is a set S, closed under a binary operation ∗, satisfying the following axioms:

(1) Associativity of ∗; for all a, b, c ∈ S,

a ∗ (b ∗ c) = (a ∗ b) ∗ c
(2) Existence of identity element; there exists an e ∈ S such that for all x ∈ S,

e ∗ x = x ∗ e = x

(3) Existence of inverses; for every a ∈ S, there exists an a−1 ∈ S such that

a ∗ a−1 = a−1 ∗ a = e

Definition 1.2. An abelian group is a group (S, ∗) such that ∗ is also commutative; for all a, b ∈ S,

a ∗ b = b ∗ a

Example. Common examples of abelian groups are R, Z, Q, together with addition.

Definition 1.3. Let G be a group and let H be a subgroup of G. Then the cosets of H form G/H, the
quotient group of G over H.

Example. The quotient group Z/2Z can be thought of as {0, 1} because the cosets of 2Z are 0 + 2Z and
1 + 2Z.

Definition 1.4. A ring is a set R with two binary operations + and ∗ such that

(1) (R,+) is an abelian group.
(2) ∗ is associative
(3) The left and right distributive laws hold:

a ∗ (b+ c) = a ∗ b+ a ∗ c
(b+ c) ∗ a = b ∗ a+ c ∗ a

Definition 1.5. Consider an inverse system with algebraic objects (Ai)i∈I . Suppose we have a family of
maps fij : Ai → Aj such that fik = fij ◦ fjk. Then the inverse limit of the system is

A = {(a1, a2, a3, . . . ) ∈
∏
i∈I

Ai : fij(ai) = aj∀i, j ∈ I}

Example. There is one inverse limit, in particular, that we should be familiar with: lim←−n Z/p
nZ = Zp.

Analogously, as we will learn, lim←−nR/p
nZ = Sp.

Definition 1.6. Let (A, ∗) and (B, ∗′) be two algebraic structures with binary operations. A homomorphism
is a mapping φ : A→ B such that

φ(x ∗ y) = φ(x) ∗′ φ(y).

If this mapping is bijective, it is called an isomorphism.

Proposition 1.7. R/Z under addition is isomorphic to the unit circle C = {z ∈ C : |z| = 1} under
multiplication.
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Proof. To prove these two structures are isomorphic, we find a function that satisfies the properties in the
above definition. Such a function is φ(x) = e2πix. Since the domain of φ is R/Z, each x maps to a different
element of C. Thus,

φ(x) = φ(y) =⇒ x = y.

So φ is injective. Furthermore, C can be rewritten as C = {x ∈ C : eix}. Therefore φ is surjective, and, as a
result, bijective. Finally,

e2i(x+y) = e2ixe2iy

establishing that φ is an isomorphism. �

Remark 1.8. Going forward, we shall continue to use C to denote the unit circle.

Definition 1.9. A topological space X is connected if there cannot exist nonempty open subsets Y and Z
of X such that Y ∪ Z = X and Y ∩ Z = ∅.

Definition 1.10. A subspace A of a topological space X is compact if every open cover of A has a finite
subcover i.e. for every collection of open sets {Ui}i∈I such that

⋃
i∈I Ui ⊇ X, there exists a finite set J ⊆ I

such that
⋃
i∈J Ui ⊇ X.

Example. According to the Heine Borel Theorem, any closed and bounded set on R is compact. Furthermore
any interval on R is connected. As we will learn, Sp is a connected and compact.

2. Models of the p-adic solenoid

To describe the p-adic solenoid (which we shall denote Sp), we often use models to make it helpful in
different contexts. Here are a few:

Sp = {(s0, s1, s2, s3, . . . ) ∈ CN : si = spi+1}
Sp = {(s0, s1, s2, s3, . . . ) ∈ (R/Z)N : si = psi+1}

Sp = lim←−
n

R/pnZ = {(s0, s1, s2, s3, . . . ) ∈
∏
n

R/pnZ : si ≡ si+1 (mod pi)}

where we define real numbers a and b to be congruent modulo m (we denote this as a ≡ b (mod m), as in
the convention with integers) if and only if m|(a− b). [1] [3]

As a result of the isomorphism we proved in Proposition 1.9, the first two definitions of the solenoid are
equivalent; they only differ in names. This can be very helpful; the first definition clearly demonstrates that
the p-adic solenoid is an inverse limit of circles. However, for the most part, both definitions have the same
information. For any given element of Sp, if you find sn, you can find si for i < n. Furthermore, there are
p choices for sn+1, p2 choices for sn+2, p3 choices for sn+3, and so on. Finally, we must note that there are
uncountably many elements of Sp, as each element of each tuple is selected from the interval [0, 1). Useful
as the first two definitions are, we shall opt to use the third one in order to describe how Sp relates to other
algebraic objects. [3]

As a consequence of definition 3, the surjective homomorphisms fn : Sp → R/pnZp exist for n ≥ 0.
Furthermore, we have an injective homomorphism f : R → Sp and surjective homomorphisms from R to
each of the R/pnZ’s. We summarize this in a commutative diagram, where dashed arrows denote injection
and filled arrows denote surjection. [5]

R

��

�� ""��yyvv

Sp

rr tt {{ "" ))
· · · // R/pnR // R/pn−1R // R/pn−2R // · · · // R/pZ // R/Z

What does this all tell us? Apart from all the mappings, it gives us a coherent system of residue classes
whereby we can classify any element of Sp: we can describe any element x ∈ Sp as a x0 modulo 1, x1 modulo
p, x2 modulo p2, and so on, such that xm is congruent to xn modulo pn whenever m > n [6].
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3. Properties of the solenoid and its elements

We have investigated how to define the p-adic soleniod, and we have looked at how it maps between other
algebraic objects. Now, we’re going to establish some properties of the group itself.

Proposition 3.1. Every element of Sp can be uniquely formed by an element of Zp and a real number on
the interval [0, 1). [2] [5]

Proof. First, note that there exists a subset of Sp isomorphic to Zp. This is because Sp has a surjective
homomorphism to R/pnZ for n ≥ 0. It follows that Sp has a surjective mapping to Z/pnZ for n ≥ 1, since
for each n, Z/pnZ ⊂ R/pnZ. Hence, we can represent any element of Zp by mapping to an integer in R/pnZ
for n ≥ 1 and to 0 in R/Z.

Now, take any z ∈ Sp. Suppose z ≡ r (mod 1), where we take 0 ≤ r < 1. Then z − r ≡ 0 (mod 1), and
as a result z − r ∈ Zp. Thus we may write

z = x+ r,

where x ∈ Zp and r ∈ [0, 1). The proof of uniqueness is straightforward: let

(1) z = x+ r = x′ + r′

where both x 6= x′ and r 6= r′. Since r 6= r′, then r − r′ 6≡ 0 (mod 1), a contradiction. So in order for (1) to
hold, we must have r = r′, and in turn, this forces x = x′. �

The form in which we wrote elements of Sp in the previous proposition tells us that we cannot use the
p-adic metric. To see this, note that we can represent any element of Sp in the following base-p expansion:

(2) z =

∞∑
n=−∞

anp
n = . . . a−2p

−2 + a−1p
−1 + a0 + a1p+ a2p

2 + . . .

where ai ∈ {0, 1, 2, . . . , p− 1}. In order for z to be a representable quantity, we need the above series to con-
verge in not only one direction, but both directions. This is just not possible, as limn→−∞ dp(anp

n, an+1p
n+1) =

∞.
To fix the problem we introduce a new metric. Take two elements from Sp, x and y. Let x− y = n+ ξ,

where n ∈ Zp and ξ ∈ [0, 1). Then y − x = (−n− 1) + (1− ξ), where −n− 1 ∈ Zp and 1− ξ ∈ [0, 1), and

d(x, y) = min{`(x− y), `(y − x)}

`(x− y) = max{|n|p, ξ}
`(y − x) = max{| − n− 1|p, 1− ξ}

This setup allows (2) to converge in both directions, as we use the p-adic metric for the integer terms,
and the Euclidean metric for the terms between 0 and 1. In both directions, the terms get closer and closer
together. Now we can use the form presented in (2) to describe the elements of Sp. [2]

But there is a problem with this form, however—it loses uniqueness. Note the following proposition:

Proposition 3.2. In S2, we have 0 = . . . 11111.11111 . . .

Proof. We write a = . . . 11111 and b = 0.11111 . . . and sum the two.

a = · · ·+ 1 · 24 + 1 · 23 + 1 · 22 + 1 · 2 + 1

= · · ·+ (2− 1)24 + (2− 1)23 + (2− 1)22 + (2− 1)2 + (2− 1)

a+ 1 = 0

a = −1

b = 1 · 2−1 + 1 · 2−2 + 1 · 2−3 + · · ·

=
1
2

1− 1
2

= 1

Hence, . . . 11111.11111 · · · = a+ b = 0. �
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Owing to Proposition 3.2, it would be most preferable to rewrite z = x + r as z = (x, r), since x and r
are unique. This is acceptable, as the product Zp× [0, 1), with the metric defined above, is algebraically and
topologically equivalent to Sp. [2]

We conclude our investigation of Sp by examining some properties of the object itself. One can think
of the p-adic solenoid as gluing the real numbers together with the p-adic integers in order to make them
continuous. By doing so, we encounter an object Sp, that can represent any element of R, Zp, and Qp. It
can represent e; this was a glaring deficiency of Qp. On the other hand, we lose multiplication, as Sp is an
abelian group, rather than a ring. So for the sake of performing operations, there are probably better sets
to work with.

But Sp still has some useful topological properties. For one thing, it is compact. We prove a second
property below. This proof comes from [5], and it shall finish our exploration of the p-adic solenoid.

Proposition 3.3. Sp is a connected topological space. [5]

Proof. We utilize the fact that if A is a connected topological space, and A ⊂ B ⊂ A, then B is connected
as well. Define A = {(x, ξ) ∈ Sp : x+ ξ ∈ R, x ∈ Zp, ξ ∈ [0, 1)}. Then we have A ⊂ Sp ⊂ A. It follows that
Sp is a connected topological space. �
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