EUCLIDEAN MODELS OF \mathbb{Z}_p AND \mathbb{Q}_p

LORENZO & SOPHIA WOLCZKO

1. INTRODUCTION

Definition 1.1. [6] Two objects are said to be homeomorphic if they can be deformed into each other by a continuous, invertible mapping. (Rather, continuous and one-to-one in surjection, and having a continuous inverse.)

Example. A doughnut and a coffee cup are homeomorphic topologically.

Definition 1.2. [4] A subset $E \subseteq \mathbb{R}^n$ which is homeomorphic to \mathbb{Z}_p is called a Euclidean model of \mathbb{Z}_p .

When n = 1, E is called a linear model of \mathbb{Z}_p . If $\mathbb{R} > 1$, E is a nonlinear model of \mathbb{Z}_p .

2. Linear Models of \mathbb{Z}_p

2.1. Cantor Sets [4] [2]. The classical Cantor Set C is the set obtained by taking the interval [0, 1] in \mathbb{R} , and removing the middle third, leaving you with $[0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Then, remove the middle third of each of those segments, leaving you with $[0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$. Continue removing the middle third of each segment, ad infinitum.

There are some interesting properties of the Cantor Set. For example:

- (1) C is totally disconnected
- (2) C is uncountable [1]
- (3) $0 \neq C$ is compact

Definition 2.1. A space X is said to be totally disconnected if for every two distinct points $y, z \in X$, there are open subsets $Y, Z \subset X$ with $Y \cup Z = X$, $y \in Y$, $z \in Z$, and $Y \cap Z = 0$.

Another way of thinking about this definition is that a set is totally disconnected any two points can be separated by a decomposition of the original set - there are no nontrivial connected sets.

Definition 2.2. A subset A of a metric space X is said to be compact if every open cover has a finite subcover. Another way of saying this is it contains all its limit points and is bounded.

Definition 2.3. A set X is nowhere dense if the union of all the open subsets of the smallest closed set containing X is the empty set. [3]

One way of thinking about this is to say that if A has nonempty intersection with nonempty set U, then we can "shrink" U to a nonempty open set V which is disjoint from A.

Definition 2.4. A set P is perfect if it is closed, and contains no isolated points. Rather, in a perfect set, any point can be approximated arbitrarily well by other points in the set.

Date: June 11, 2018.

The classical cantor set is a Euclidean model of \mathbb{Z}_p . How so? Let us use the example of the ternary cantor set with \mathbb{Z}_2 . The *n*th iteration of removing the middle section of each segment breaks the original segment into two portions, which we can say represent the residue classes modulo 2^n . For example, after the first iteration, we have two segments, representing the numbers that are 0 (mod 2) on the left and 1 (mod 2) on the right. The second iteration breaks the left segment into a section representing numbers that are 0 (mod 4) and 2 (mod 4), and the right segment into sections representing the numbers that are 1 (mod 4) and 3 (mod 4), from left to right.

As it turns out, any linear model of \mathbb{Z}_p is homeomorphic to the cantor set. In fact, more generally, any perfect, compact, totally disconnected metric space is homeomorphic to the Cantor set. [5]

Proof. By the definition of a totally disconnected metric space, any point is contained within a set of arbitrarily small diameter which is both closed and open. So, consider a cover of the space by such sets, of diameter ≤ 1 . It is compact, so we can take a finite subcover. Since any finite intersection of such sets is still both closed and open, by taking all possible intersections we will obtain a partition of the space into finitely many closed and open sets of diameter ≤ 1 . Since the space is perfect, no element of this partition is just a point, so, a further division is possible. Repeating this procedure for each set in the cover, by covering it by sets of diameter $\leq 1/2$, we obtain a finer partition. Proceeding by induction, we obtain a nested sequence of finite partitions into closed and open sets of positive diameter $\leq 1/2n$, n = 0, 1, 2, ... By mapping elements of each partition inside a nested sequence of contracting intervals, we construct a homeomorphism of the space onto a nowhere dense perfect subset of [0, 1]. Since any compact, perfect, totally disconnected subset of the real line is homeomorphic to the Cantor set (see [5] for the proof of this) our space is homeomorphic to the Cantor set.

Since \mathbb{Z}_p is compact, perfect, and totally disconnected, any linear model of \mathbb{Z}_p must also have these properties. Therefore, any linear model of \mathbb{Z}_p must be homeomorphic to the Cantor set.

3. Nonlinear Models of \mathbb{Z}_p

One notable example of a nonlinear model of \mathbb{Z}_p is of course Sierpinski's Triangle (Figure 1). It's fairly easy to see how this is a model of \mathbb{Z}_3 . The top triangle represents 0 mod 3, the left represents 1 mod 3, and the right represents 2 mod 3, and so it continues similar to the cantor set.

Another nonlinear model of \mathbb{Z}_p which we explored in week 2 is simply circles inside of circles (Figure 4). As usual, each circle represents some residue class modulo p^n for some n. Note also that in this diagram, open balls are actually circles. Inside the biggest circle we have $B_0(\frac{1}{3}), B_3(\frac{1}{3})$, and $B_6(\frac{1}{3})$

There are also other fractal models of \mathbb{Z}_p . Figure 2 is a great example, with each arm and the center being a residue class modulo 5, and so on.

4. EUCLIDEAN MODELS OF \mathbb{Q}_p

Models of \mathbb{Q}_p and \mathbb{Z}_p are very similar, except for one main difference. Models of \mathbb{Q}_p are infinitely large. If \mathbb{Z}_p is a Sierpinski's Triangle, \mathbb{Q}_p is 3 Sierpinski's Triangles stacked on top of each other, and 3 of those stacked on top of each other, etc. To think about it a little differently, the three triangles inside \mathbb{Z}_p are 3-adic numbers which end in 0, 1, or 2. Inside

Figure 1. Sierpinski's Triangle

the 2 triangle are numbers which end in 02, 12, or 22, etc. When we expand beyond \mathbb{Z}_p , all we get \mathbb{Z}_p being the ones which end in .0, and the other three triangles the same size as being the numbers which end in .1 or .2

References

- Shishir Agrawal. "Cantor Set". In: (July 2015). URL: https://math.berkeley.edu/ ~sagrawal/teaching/su15_math104/lec8_cantor.pdf (visited on 06/04/2018).
- [2] Zhixing Guo. "Cantor Set and Its Properties". In: (Apr. 2014). URL: http://web.math. ucsb.edu/~padraic/ucsb_2013_14/mathcs103_s2014/mathcs103_s2014_zhixing_ presentation.pdf (visited on 05/30/2018).
- [3] Dave Milovichand and Eric Weisstein. "Nowhere Dense". In: (June 2018). URL: http://mathworld.wolfram.com/NowhereDense.html (visited on 06/04/2018).

Figure 2. A Fractal Model of \mathbb{Z}_5

Figure 3. Iterations of Figure 2

Figure 4. The model of \mathbb{Z}_3 mentioned in week 2

- [4] Esther Röder Samuel Trautwein and Giorgio Barozzi. "Topological properties of \mathbb{Z}_p and \mathbb{Q}_p and Euclidean models". In: (Nov. 2011). URL: https://www2.math.ethz. ch/education/bachelor/seminars/hs2011/p-adic/report5.pdf (visited on 05/30/2018).
- [5] Anatole Katok Alexey Sossinsky. "Introduction to Modern Topology and Geometry". In: (Aug. 2007). URL: http://www.personal.psu.edu/axk29/MASS-11/GT-bookexcerpt.pdf (visited on 06/04/2018).

[6] Eric W. Weisstein. "Homeomorphic". In: (). URL: http://mathworld.wolfram.com/ Homeomorphic.html (visited on 06/02/2018).