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1. Defining the Cantor Set

To explore the connections between the Cantor Set and the p-adic numbers. It is useful
to define and examine the Cantor Set itself.

Definition 1.1. The Cantor Set is iterative constructed as follows. We begin with the
segment [0, 1] and split it into thirds. We keep the closed interval [0, 1

3
] and [2

3
, 1]. Then we

take our two smaller intervals, split each into thirds and ”discard” the open middle interval
in each sub interval. We do this infinitely, resulting in 2n intervals of length 3−n.

There are four main properties of the Cantor Set which are important to observe.

Lemma 1.2.
1. C is perfect. See definition below.
2. C is uncountable
3. C has a vanishing Lebesque Measure
4. C is compact

Definition 1.3. A set X is said to be perfect if ∀x ∈ X there is a sequence xn ∈ E − {x}
such that xn converges to x.

Proof. For the first statement we begin with some x ∈ C. We can obviously choose xn ⊂
C − {x} such that |xn − x| ≤ 3−n where n can be arbitrarily large.

The second statement is implied by the first. Let E = {ei}∞i=1 ⊂ R be countable. Also
define En = E −{en}. Pick x1 ∈ E1 and pick a finite open interval In such that x1 ∈ In and
e1 /∈ I1. Since E is perfect, I1∩E2 6= ∅. Then pick x2 ∈ I2∩E2 and let I2 be an open interval
such that x2 ∈ I2 ⊂ I1 and e2 /∈ I2. Doing this repeatedly we get a sequence of decreasing
interval (1n) such that en /∈ In. We also notice that . . .⋂

n≥1

E ∩ In 6= ∅

since all sets E ∩ In are compact and nonempty. This contradicts our assumption that E is
countable.

For the third statement we know that Cn is made up of 2n segments of length 3−n and
therefore |Cn| = (2

3
)n. Since Cn ⊃ Cn+1 for all . . .

|C| = lim
n

∞−→
|Cn| = lim

n
∞−→

(
2

3

)n

= 0.

The last statement is proven by the Heine Borel theorem that states that if C ⊆ R then
it is closed and bounded if and only if it is compact. The Cantor set is defined to be closed
and is clearly bounded as ∀x ∈ C : d(0, x) ≤ 1, and is thus compact. �
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2. Variants of the Cantor Set and an Explicit Homeomorphism

We can also define a variant of the Cantor Set and show its relation to Zp.

Definition 2.1. For any prime number p we say that C(p) is set made by splitting the closed
interval [0, 1] into 2p−1 segments and removing every other segment. Then we do this again
to the remaining intervals ans so on and so forth infinitely.

We can now define an explicit homeomorphism between the Cantor set and Zp. We define
function F : Zp −→ C as . . .

∞∑
n=0

anp
n −→

∞∑
n=0

(2an)(2p− 1)−(n+1)

Further we can prove that this transformation and its inverse are continuous.

Theorem 2.2. The function F stated above is a homeomorphism between C and Zp.

Proof. Let x =
∑∞

n=0 xn(pn) and y =
∑∞

n=0 yn(pn) be elements of Zp. If . . .

|x− y| ≤ p−k

. . . then the first k digits of the p-adic expansion of are the same. This in turn implies that
the first k digits of F (x) and F (y) are the same meanning . . .

|F (x)− F (y)| ≤ (2p− 1)k

Clearly F is continuous as close values stay relatively close. Thus we have shown a homeo-
morphism. �
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