p-ADIC ANALYSIS: KRASNER'S LEMMA

CONNIE JIANG

1. Krasner's Lemma

Theorem 1.1 (Krasner's Lemma). Let $f(x) \in \mathbb{Q}_p[x]$ be an irreducible polynomial, and let $\alpha = \alpha_1, ..., \alpha_n$ be all of its roots, in some extension field of \mathbb{Q}_p . Suppose that β is a root of some nonzero polynomial in $\mathbb{Q}_p[x]$, and that $|\alpha - \beta| < |\alpha - \alpha_i|$ for $2 \le i \le n$. Then $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\beta)$.

Krasner's lemma roughly says that if you change the coefficients of a polynomial a little, the field of a root will not change. Since the roots of a polynomial continuous functions of the coefficients, if you change the coefficients of f(x) just a little to get g(x), and β is the root of g(x) closest to β , then $|\alpha - \beta|$ will be very small. Since $|\alpha - \alpha_i|$ is constant, it follows that if you change the coefficients by a sufficiently small amount, then you end up with the same field.

2. Applications of Krasner's Lemma

Definition 2.1. A set S of real numbers is *compact* if every sequence in S has a subsequence that converges to an element in S.

Proposition 2.2. A set S of real numbers is compact if and only if the set is closed and bounded.

Corollary 2.3. \mathbb{Q}_p has only finitely many extensions of each degree.

Proof. Given by Krasner's Lemma, if we take all the monic irreducible degree-n polynomials in $\mathbb{Z}_p[x]$ then for each f(x), there must be some positive number ε_f so that if we change each of the coefficients other than the leading term by less than ε_f in the p-adic sense, then we end up with the same field. We can represent each polynomial f(x) by an n-tuple of elements of \mathbb{Z}_p , namely the coefficients. So inside \mathbb{Z}_p^n , we have all these polynomials, together with these $\varepsilon_f - balls$ around each one. These $\varepsilon_f - balls$ cover all of \mathbb{Z}_p^n . We only want the irreducible polynomials, not all polynomials, so this won't actually be all of \mathbb{Z}_p^n . This makes a small difference, but the rest of the argument still works with this slightly modified space.

Since the space \mathbb{Z}_p^n is compact, we know that if we cover it by any number of open balls, then we can actually find only finitely many of those open balls that already cover \mathbb{Z}_p^n . So, taking our finite number of ε_f 'balls that cover all of \mathbb{Z}_p^n , each one of those corresponds to a single degree-n extension. Those are all the different degree-n extensions, so there are only finitely many.

EULER CIRCLE, PALO ALTO, CA 94306
E-mail address: placidrunningriver@gmail.com

Date: May 21, 2018.