HENSEL LIFTING AND THE DISCRETE LOGARITHM PROBLEM

ARCHISHMAN SRAVANKUMAR

1. The Discrete Logarithm Problem

The discrete logarithm problem is used in many areas of cryptography like ElGamal encryption, Diffie-Hellman Key Exchange, and the Digital Signature Problem. Although the problem can be defined for any group, here we will only look at the specific case where the group is \mathbb{F}_p .

Definition 1.1. The discrete logarithm problem. Given a prime p and $g, h \in \mathbb{F}_p$ find an x such that

$$g^x = h \mod p.$$

2. Hensel Lifting and the Discrete Logarithm Problem

For a full discussion of this problem, see [1]. We define a new function called the **Hensel-Dlog** function and show that computing it is as hard as the Discrete Logarithm problem. The **Hensel-Dlog** is defined as

Hensel-Dlog
$$[p, g, l](q^x \mod p) = q^x \mod p^l$$
.

Theorem 2.1. Let ω be a k-bit random prime and p, such that $\omega|p-1$, be a prime whose size is polynomially related with k. Given g of order ω in \mathbb{Z}_p^* , p and ω , Hensel – Dlog[p, g, l]is hard if and only if the discrete logarithm in the subgroup spanned by g in \mathbb{Z}_p^* is a one way function, where l is defined as the unique positive integer such that $g^{\omega} \not\equiv 1 \mod p^l$ and $g^{\omega} \equiv 1 \mod p^{l-1}$

Sketch of Proof. First we see that if the discrete logarithm problem is not hard, then, trivially, neither is computing **Hensel-Dlog**. The proof of the "other way" still remains.

We assume the existence of an Oracle which efficiently calculates **Hensel-Dlog** with probability ϵ . First we pick a random *a* sampled uniformly from \mathbb{Z}_w^* . We call the oracle twice to evaluate **Hensel-Dlog**[*p*, *g*, *l*](*h* mod *p*) and **Hensel-Dlog**[*p*, *g*, *l*](*h^a* mod *p*). From this we get $g^x \mod p^l$ and $g^\mu \mod p^l$ where $\mu = ax \mod \omega$. Since $ax = \mu + r\omega$, we get

$$g^{ax} \equiv g^{\mu}g^{r\omega} \mod p^l.$$

Using our oracle calls, it is easy to compute $g^{r\omega} \mod p^l$. Because of the constraints on l, r can be computed as well. This gives the bounds x as

$$\frac{r\omega}{a} \le x < \frac{(r+1)\omega}{a}$$

It can be shown that with non trivial probability, this interval is small enough to search exhaustively to find x.

Date: June 11, 2018.

References

[1] Dario Catalano, Phong Q. Nguyen, and Jacques Stern. The hardness of hensel lifting: The case of rsa and discrete logarithm. pages 299–310, 2002.

EULER CIRCLE, PALO ALTO, CA 94306 E-mail address: archishman.sravankumar@gmail.com