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VARUN SRIVASTAVA AND SANJAY GOLLAPUDI

Pisot Numbers, often referred to as Pisot-Vijayaraghavan Numbers, have several unique
number theory applications. First discovered in the research of the uniform distribution
of sequences, Pisot Numbers have a variety of interesting properties. They have many
applications in the exploration of near integers, uniform distribution, and the determination
of whether a number is algebraic. Several proofs that build up to these results are omitted
from this paper with reference to their location. The Pisot-Vijayaraghavan Problem, which
is stated and explored at a basic level here, is a major open problem today.

1. Definitions

Definition 1. An algebraic integer of degree n is a root α of an irreducible monic polynomial
P (x) of degree n with integer coefficients, its minimal polynomial.

Definition 2. The conjugates of α are the other roots of P (x).

Definition 3. If α > 1 but the other roots lie within the unit circle |x| < 1 on the complex
plane, α is a Pisot Number.

Example. The golden ratio φ is a Pisot Number because it is around 1.618... however the
other root to its minimal polynomial x2−x−1, −φ−1 = −0.618 . . . where |−0.618 . . . | < 1.

Definition 4. ||x|| denotes the distance between x and the nearest integer. Piecewise, this
can be viewed as {

x (mod 1) if x (mod 1) ≤ 0.5

1− x (mod 1) if x (mod 1) > 0.5

where the least positive value of x (mod 1) is always taken.

Notation. In this paper, θ and α will be frequently used to denote Pisot Numbers, with
specification in each section dictating it more precisely.

Notation. The roots of an irreducible monic polynomial P (x) are θ(1), . . . , θ(s), and one of
these is a Pisot Number, then θ(1) is that Pisot Number; θ in the absence of a superscript is
taken to mean θ(1).

Next are some basic properties of pisot numbers.

2. Basic Properties

Proposition 5. (By definition) Every integer greater than 1 is a Pisot Number. Proof:
Consider the polynomial f(x) = x − k where the root is the integer k > 1. There are no
other roots but k is still considered to be a Pisot Number.
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Proposition 6. Every rational Pisot Number is an integer greater than 1. Proof: This
directly follows from the polynomial P (x) having the requirement of having integer coefficients
and being monic.

Proposition 7. Powers of Pisot Numbers are also Pisot Numbers. Proof: This follows from
the fact that the conjugates of a power of some number are just the powers of the conjugates

3. Pisot Numbers Modulo 1

Theorem 8. Let θ be a Pisot Number; the sequence θn converges to 0 modulo 1.

Proof. Let λ = supj=2,...,s|θ(j)|. By Newton’s Formulas, we know that the sum of any power
of the roots of a polynomial with integer coefficients is a polynomial. In particular, θn +∑s

j=2 θ
(j)n is an integer. Therefore, we know for large values of n that ||θn|| = |

∑s
j=2 θ

(j)n|.
We find that θ(1)

n
+ · · ·+θ(s)

n ≤ λn+ . . . λn = (s−1)λn. Therefore, because it is a geometric
sequence, the sequence ||θn|| converges to 0. �

4. λθn (Mod 1)

Theorem 9. Let θ be a Pisot Number and λ be an algebraic integer of Q(θ). Then, the
sequence ||λθn|| converges to 0.

Proof. Let λj denote an algebraic integer of Q(θj). As before, λθn +
∑s

j=2 λ
(j)θ(j)

n
is an

integer such that ||λθn|| = |
∑s

j=2 λ
(j)θ(j)

n|. With the same argument as last time, it is clear

||λθn|| converges to 0 geometrically. �

5. The Converse Statement (The Pisot-Vijayaraghavan Problem)

The converse statement to theorem 7 (above) is an open question known as the Pisot-
Vijayaraghavan Problem. It asks that if θ is an integer greater than 1, λ is a non-zero real,
and limn→∞||λθn|| → 0, then is θ a Pisot Number? There are two weaker statements that
are known but we will not prove (proofs of both can be found in [Bea92]):

Theorem 10. If θ is algebraic, then it is a Pisot Number.

Theorem 11. If ||λθn|| converges to 0 sufficiently rapidly, θ is a Pisot Number.

[Bea92] point out that both imply that λ ∈ Q(θ).

6. Small Pisot Numbers

Theorem 12 (Siegel). The smallest Pisot Number is

θ0 =
1

6

(
3

√
9−
√

69 +3

√
9 +
√

69

)
2

2
3
3
√

3 ≈ 1.3247 . . .

which is the only real root of x3 − x+ 1.

This turns out to be quite difficult to prove and requires first proving that the set of Pisot
Numbers is closed, which is an important but also complicated insight. A proof of this being
the smallest value is found in [Sie44] and the proof that the set of Pisot Numbers is closed
was found by [Sal44].
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7. Applications of Pisot Numbers

7.1. Uniform Distribution. Uniform Distribution was the context in which Pisot Numbers
were discovered, and their role has always been important in the development of that theory
[Bea92].

Theorem 13. Let α be a real number greater than 1. Then the following statements are
equivalent:

• α is not a Pisot Number.

• There exists an integer q > α such that the sequence un(α, q) is uniformly distributed
mod 1.

• For all integers q > α, the sequence un(α, q) is uniformly distributed mod 1

where un(α, q) = (q − α)
∑

k{
n
qk
}αk and {a

b
} indicates the fractional part of a

b
.

We can prove this given three Lemmas that we will not prove.

Lemma 14 (Weyl’s Critereon). A sequence x1, x2, ... is uniformly distributed modulo 1 if
and only if

lim(N →∞)
1

N

∑
n<N

e2πimxn = 0

for all m.

A proof of this is found in [Fin03]

Lemma 15. A real θ greater than 1 is a Pisot Number if and only if there exists a non-zero
real λ such that the series

∑
n=0 ||λθn||2 converges.

A proof of this is found in [Bea92].

Lemma 16. Let (ak) be a sequence of real numbers, and q a positive integer such that the
series

∑
k akq

−k converges. We set ρk =
∑

h=k+1 ahq
−h and vn =

∑
k{

n
qk
}ak. Then,

lim supx→∞
1

x
|

k∑
n

e2iπvn| ≤
∏
k

|sin(πqk+1ρk)

qsin(πqkρk)
|.

This is proven in [Bea92].

Proof of Theorem 13. Let a = j(q − α)αk for some positive integer j. The series
∑n

k akq
−k

converges, and it follows from the third lemma that

lim supx→∞
1

x
|

k∑
n

e2iπun(α,q)| ≤
∏
k

|sin(πjqαk+1)

qsin(πjαk+1)
|.

Suppose α is not a Pisot Number; then by the second lemma, the series
∑

k ||jαk||2 diverges
and consequently, the infinite product on the right hand side does as well. Therefore, by
Weyl’s Critereon, the sequence is uniformly distributed modulo 1. Suppose α is a Pisot
Number; then the infinite product is non-zero and sequence is not uniformly distributed
modulo 1. If one of the factors is zero then there exists a ki such that jαki ∈ {1

q
. . . q−1

q
};

then αk0 is rational. Because it is also a Pisot Number, it must then be an integer such
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that α is also an integer and un = n(q − α)
∑

k
α
q
k = αn such that un(α, q) is not uniformly

distributed modulo 1. �

7.2. Near-Integers. We know that ||θn|| → 0 and ||λθn|| → 0, so we can use this to easily
generate near-integers. ther

Figure 1. Pisot numbers and near integers

Example. The minimal polynomial x2− 6x− 1 has roots 3 +
√

10 and 3−
√

10 such that the
former is a Pisot Number.

(3 +
√

10)6 = 27379 + 8658
√

10 = 54757.9999817 · · · ≈ 54758− 1

54758
.

7.3. Approximating irrationals. In a very similar way as the previous application, Pisot
Numbers can be used to approximate rationals as the radical term and the integer term will
also tend to converge.

Example. In the above example, 27379 is very close to 8658
√

10 such that

27379

8658
= 3.162277662 · · · ≈

√
10 = 3.162277660 . . . .
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