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Abstract

Wolstenholme showed that the numerator of the sum
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1
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1

3
+

1

4
...+

1

p− 1

when reduced is divisible by p2 and the numerator of

1 +
1

4
+

1

9
+

1

16
...+

1

(p− 1)2

when reduced is divisible by p. As Wolstenholme himself proved, this same set of congruences can be
expressed otherwise as (

2p− 1

p− 1

)
≡ 1 (mod p3)

Charles Babbage also showed that congruence for modulo p2. In this article, we present an elementary
proof of this theorem and a few generalizations, along with its applications and extensions.

1 Introduction

Understanding the prime numbers has been the holy grail in number theory for a long time, probably
since the time of Fermat, and one way that we get to know more about them are through congruences. Let’s
review a few congruences that may seem very familiar:

Theorem 1 (Fermat’s Little Theorem). Let p be a prime and a be any integer. Then Fermat’s Little
Theorem says that

ap − a ≡ 0 (mod p)

We also have Wilson’s theorem as follows

Theorem 2 (Wilson). Let p be a prime. Then,

(p− 1)! ≡ −1 (mod p)

In 1819, Charles Babbage came up with the following congruence:(
2p− 1

p− 1

)
≡ 1 (mod p2)

which Wolstenholme later extended to modulo p3 in 1862. We can also write this congruence modulo p itself,
through Lucas’s theorem [1].

Theorem 3 (Lucas). (
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p)

where
m = mkp

k + mk−1p
k−1 + · · ·+ m1p + m0

and
n = nkp

k + nk−1p
k−1 + · · ·+ n1p + n0
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This immediately implies (
np

mp

)
≡
(
n

m

)
(mod p)

Now, setting n = 2,m = 1 yields the congruence modulo p.

2 Wolsenholme’s Theorem and its Generalizations and Extensions

Theorem 4. For a prime p > 3, the following congruence(
2p− 1

p− 1

)
≡ 1 (mod p3)

holds. This can also be expressed as (
ap

bp

)
≡
(
a

b

)
(mod p3)

.

Wolstenholme initially asserted that the numerator of the sum
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1
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+
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4
... +

1

p− 1

when reduced is divisible by p2 and

1 +
1

4
+

1

9
+

1

16
... +

1

(p− 1)2

when reduced is divisible by p. From here, it is easy to see that the binomial coefficient
(
2p−1
p−1

)
satisfies the

above congruence. Thus, we will prove Wolstenholme’s Theorem as follows:

Proof. Here, we will use the alternate harmonic version above. We want to prove that for any prime p > 4
then when

1 +
1

2
+

1

3
+

1

4
... +

1

p− 1

is reduced, the numerator is divisible by p2.

p−1∑
i=1

1

i
=

p−1
2∑

i=1

1

i
+

1

p− i
=

p−1
2∑

i=1

p

i(p− i)

, so it is sufficient to show that
p−1
2∑

i=1

1

i(p− i)
≡ 0 (mod p)

We know that in (mod p),
1

i(p− i)
≡ − 1

i2
(mod p).Now, because of unique inverses, we have

∑ p−1
2

i=1 i2 ≡ 0

(mod p), and so this is just sum of squares until p, which is 0 (mod p)

There is also a beautiful proof by means of a combinatorial argument as follows [2]:

Proof. We would like to show that (
ap

bp

)
≡
(
a

b

)
(mod p3)

. Let p be any prime, and and choose a, b as any nonnegative integers, with a ≥ b. We can then construct a
set X with ap elements. Consider the cyclic group of order p, which is isomorphic to Zp. We can model this
as separating X into a subsets of p elements each, and the cyclic group is the act of rotating each of those
subsets. Then we can describe it as a group action on the set A ,and any subset of size bp. Then we obtain
the theorem by examining the orbit lengths.
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2.1 Extensions to other powers

Glasier in 1900 [3] extended the p3 case to p4 with the following, of which Wolstenholme’s Theorem is a
special case:

Theorem 5 (Glasier). (
2p− 1

p− 1

)
≡ 1− 2p

p−1∑
i=1

1

i
(mod p4)

Then, Macintosh established the following for the 5th power:

Theorem 6 (Macintosh). (
2p− 1

p− 1

)
≡ 1− p2

p−1∑
i=1

1

i2
(mod p5)

3 Congruences in relation to the Bernoulli Numbers

The Bernoulli numbers defined based on the following generating function,

t

et − 1
=

∞∑
n=1

Bn
tn

n!

We can see that the first few terms of the Bernoulli numbers are. B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = − 1
30 , Bn =

0 for odd n > 2. Glasier’s congruence above may be written as:(
2p− 1

p− 1

)
≡ 1− 2

3
p3Bp−3 (mod p4)

for primes p > 6 Glasier generalized this as:(
np− 1

p− 1

)
≡ 1− 1

3
n(n− 1)p3Bp−3 (mod p4)

Similarly, Macintosh’s congruence can also be written as such:(
2p− 1

p− 1

)
≡ 1− p3Bp3−p2−2 (mod p4)

for p > 6.

4 Other Wolstenholme Type Harmonic Congeunces

We shall continue with other Wolstenholme type congruences, this type more of the form of the harmonic
sum formulation. Let’s quickly restate Wolstenholme’s assertion, that for any prime p ≥ 5 the following two
congruences hold:

1 +
1

2
+

1

3
+

1

4
... +

1

p− 1

1 +
1

4
+

1

9
+

1

16
... +

1

(p− 1)2

Alkan [4] came up with a similar fomulation(From which the congruences above can be deduced)

p−1∑
k=1

1

k
≡ −1

3
p2Bp−3 (mod p3)

Another generalization of Wolstenholme’s assertion is the following due to Carlitz [5]:

1 +
1

mp + 1
+

1

mp + 2
+

1

mp + 3
... +

1

mp− (p− 1)
≡ 0 (mod p2)
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5 Wolstenholme Primes

We define a prime to be a Wolstenholme Prime if it satisfies the Wolstenholme-Jacobstaal Congruence
modulo p4, namely if (

2p− 1

p− 1

)
≡ 1 (mod p4)

From this, we can see that the Wolstenholme Quotient has to be divisible by p, or

Wp = −2

3
Bp−3

, by a special case of Glasier’s Bernoulli. Thus we get the statement that a prime is Wolstenholme iff it is
divides the numerator of Bp−3, a beautiful result. This is also equivalent to the result that the numerator

of
∑p−1

k=1

1

k
is divisible by p3, and that the numerator

∑p−1
k=1

1

k2
is divisible by p2. Only two Wolstenholme

primes have been discovered so far, and they are by no means trivial, they are 16843 and 2124679, however,
Macintosh [6] established the bound that there is no other prime less than 5 ∗ 108.

6 q-analogues of similar congruences

Consider the generalized Harmonic number sequence, which is defined as the following:

Hb
a =

a∑
k=1

1

kb

where we can see that H1
n = Hn =

∑n
k=1

1
k Then we define the q-analog of Hn to be as follows:

Hn(q) :=

n∑
k=1

1

[k]q
, |q| < 1

where
[k]q = 1 + q + q2...qk−1

Using these definitions, Andrews [7]proved that

Hp−1(q) ≡ (p− 1)(1− q)

2
(mod [p]q)

Andrews also showed another result that relies on more notation. Define

[n]q! = [n]q[n− 1]q...[1]q

and (
n

k

)
q

=
[n]q!

[k]q![n− k]q!

Then Andrews showed that (
np

mp

)
q

≡
(
n

m

)
qp
q(n−m)m p

2 (mod [p]2q)

Thus, we can obtain a q-analog for our original Wolstenholme Congruence by setting n = 2,m = 1:(
2p

p

)
q

≡ [2]qp2 −
p2 − 1

12
(qp − 1)2 (mod [p]2q)
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