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Abstract. In this paper, we will explore Hilbert Class Field theory through the lens of Algebraic
Number Theory. Using key concepts relating to ideals, Galois Theory, and number fields, we will work
our way up to Complex Multiplication.
We will start by briefly reviewing ideals and number rings, exploring the basic properties that we will
build upon later in the text. We define important terms, such as Dedekind Domains and introduce
fundamental theorems such as unique factorization of ideals. Then, we build upon this by diving into
number fields.
After this, we will make a connection between Galois Theory and number fields, exploring how ideals
are affected by automorphisms in the Galois group. Basic knowledge of ideals and Galois Theory as
well as certain results pertaining to them will arm us with the knowledge necessary to dive deeper into
Algebraic Number Theory.
Next, we will move on to concepts in Algebraic Number Theory, and work with ideals in Dedekind
domains. After introducing important definitions, such as the norm, we will explore ideals in number
fields, touching upon Galois Theory along the way. This will aid us in covering ramification as well as
the decomposition and inertial groups. These basic definitions, lemmas, and theorems will enable us to
concretely describe the Hilbert Class Field.
After introducing the Hilbert Class Field, we will explore a particular application in Genus Theory.
Then, we will introduce the Artin Symbol, a crucial element of class field theory and touch upon the
preliminaries of Artin Reciprocity .
In the final section of the paper, we will aim to generalize what we have done so far, looking at quadratic
fields from the complex multiplication perspective. This will involve proving important results in elliptic
curve mathematics, such as the group-like properties of elliptic curves. We will conclude with parting
remarks on the higher degree cases of complex multiplication, which remain open in mathematics.
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1 A Review of Number Fields and Ideals

Here, we assume the reader has basic knowledge of number fields. Thus, we begin by stating (without
proof) some basic results in algebraic number theory that we will build off of. At its most basic level, number
fields are extensions of Q, but just like in Q itself, it is useful to have some concept of integers, much like Z.
To this end, for a number field K, we define OK to be the ring of integers in K, that is, the ring of elements
α ∈ K that are the roots of monic irreducible polynomials with coefficients in Z. Essentially, OK is the set
of algebraic integers in K; it is easy to see that OK is a ring. Moreover, one can see that its field of fractions
is K and that it is finitely generated (in fact, it is a Z-module).

Proposition 1.1. Let a be a nonzero ideal in OK . Then, |OK/a| is finite.

In fact, this is what we call the norm of the ideal a, i.e., N(a), which is finite.

Proposition 1.2. The ring of integers OK is a Dedekind Domain, which means that
(i) If a ∈ OK is the root of a monic polynomial with coefficients in OK , then a ∈ OK (i.e., OK is

integrally closed in K).
(ii) OK is a Noetherian ring, meaning that if there is a chain of ideals in OK such as a1 ⊂ a2 ⊂ a3 ⊂ ...,

then there is some positive integer n such that an = an+1 = an+2 = ....
(iii) Every nonzero prime ideal of OK is maximal.

Theorem 1.3. Let I be an ideal in some Dedekind Domain R. Then, there exists another ideal J such that
the ideal IJ is principal.
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This theorem is essentially the foundation for the ideal class group, in which the identity consists of the
principal ideals.

Theorem 1.4 (Unique Factorization of Ideals). For any ideal a ∈ OK , we have a = p1p2p3...pr, where the
pi are prime ideals, not necessarily all distinct. This factorization into prime ideals is unique up to order.

This theorem reveals the importance of Dedekind Domains; even if we do not have unique factorization
of elements, we do have unique factorization of ideals. This will prove to be invaluable when we study prime
decomposition in depth.

Now, we introduce the notion of ramification. Suppose K is a number field, L is an extension of K, and
p is an ideal of OK . Then pOL is an ideal of OL and we may write it as pOL = Be11 B

e2
2 ...B

eg
g . Essentially,

prime ideals can factor further in field extensions.

Definition 1.5. For each prime ideal Bi above, ei is defined as the ramification index of that ideal. If even
one of the ei’s is larger than 1, p is said to ramify in OL. If all of the ei’s are equal to 1, p is said to split in
OL.

Definition 1.6. An interesting consequence of the previous definition is that for every ideal Bi lying over
p, we have a residue field extension OK/p ⊂ OL/Bi. The degree of this field extension is denoted by fi, and
is known as the inertial degree of Bi over p.

These definitions are quite important. We will actually revisit the residue field extension described above
when we discuss the decomposition and inertia groups.

Theorem 1.7. Let n = [L : K]. We have the following interesting results:
(i) For ideals I and J of OK , we have |OK/I||OK/J | = |OK/IJ |. This follows quickly from a variation

of the Chinese Remainder Theorem.
(ii) For an ideal IOL ∈ OL, where I ∈ OK , we have |OL/IOL| = |OK/I|n.
(iii) For an ideal a ∈ OK , we have |OK/a| = NK

Q (a), where N denotes norm.

Now, we visit a beautiful theorem that will serve as an invaluable tool later.

Theorem 1.8. From our factorization of p in OL above, we have
g∑
i=1

eifi = [L : K].

Proof. Let n = [L : K]. Then, we have |OL/pOL| = |OK/pOK |n. Doing it another way, we have |OL/pOL| =∏
|OL/Bi|ei =

∏
|OK/pOK |fiei , using the definition of fi. From this, it quickly follows that n =

g∑
i=1

eifi.

Now, we are equipped with some of the basic tools to dive into Galois Theory.

2 A Hint of Galois Theory

In this section, we aim to explore some of the underlying theory behind prime decomposition. Naturally,
this will touch upon Galois Theory. If we let L be a Galois extension of K, and let OL and OK , respectively,
be their corresponding rings of integers, then it is easy to see that for any prime ideal P of OK , Gal(L/K)
permutes the primes lying above P in OL. However, we can say something even stronger.

Theorem 2.1. Gal(L/K) permutes the prime ideals lying above P transitively. That is, for any two prime
ideals Q and Q′ in OL, there is a σ ∈ Gal(L/K) such that σ(Q) = Q′.

Proof. Aiming for a contradiction, suppose there is a prime ideal Q′ for which none of the automorphisms in
Gal(L/K) map Q to Q′. Then, by the Chinese Remainder Theorem, we know there exists a solution, x, to
the conqruences x ≡ 0 (mod Q′)) and x ≡ 1 (mod σ(Q))) for any σ ∈ Gal(L/K). Thus, if α ∈ OL is such
a solution, then NL

K(α) ∈ K ∩Q′ = P . On the other hand, since for each σ ∈ Gal(L/K), α 6∈ σ(Q), we also
have that σ−1(α) 6∈ Q. But we know that the group formed by the inverses of the elements in the Galois
group is just the Galois group, so NL

K(α) =
∏

σ∈Gal(L/K)

σ(α) =
∏

σ−1∈Gal(L/K)

σ−1(α) 6∈ Q ∈ P , so NL
K(α) 6∈ P .

This is a contradiction, so the Galois group must be transitive!
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Corollary 2.2. Let e(A|B) denote the ramification index of prime ideal A over B. Similarly, let f(A|B)
denote the inertial degree. If L is a Galois extension of K, and Q and Q′ are two prime ideals in OL lying
above prime ideal P in OK , then e(Q|P ) = e(Q′|P ) and f(Q|P ) = f(Q′|P ).

Proof. Notice that e(Q|P ) = e(Q′|P ) holds (given a Galois extension) from unique factorization and tran-
sitivity of the Galois group with respect to the prime ideals lying over P . Next, f(Q|P ) = f(Q′|P ) follows
from OL/Q being isomorphic to OL/Q

′; this is because there is an element σ ∈ Gal(L/K) that maps Q
to Q′ (showing surjectivity), and ord(OL/Q) = NL

K(Q) = NL
K(Q′) = ord(OL/Q

′) because Q and Q′ are
Galois conjugates. Thus, the homomorphism from OL/Q to OL/Q

′ is bijective, so we have an isomorphism.
In particular, this means that the degree of the residue field extension OL/Q over OK/P is the same as that
of OL/Q

′ over OK/P , i.e., their inertial degrees are the same.

Now, we come to a particularly deep theorem, in that it greatly allows us to describe primes that ramify
in number fields.

Theorem 2.3. An integer prime p divides the discriminant d of a number ring R if and only if p ramifies
in R. In particular, there are only finitely many primes ramifying in R.

3 Galois Theory Applied to Prime Decomposition

Recall that if the extension L/K is Galois, then the ramification indices of all the primes Q lying over a
fixed prime P (of OK) are equal; thus, we have that POL = (Q1Q2...Qr)

e. Also, since e and f are the same
for each Qi, we have that ref = n.

Now, when we have a group acting on a set (in our case, Gal(L/K)), it is interesting to consider subgroups
that stabilize particular elements. To this end, suppose we have a prime Qi lying over P ; now define the
decomposition group to be

D(Qi/P ) = {σ ∈ Gal(L/K) | σ(Qi) = Qi} ⊆ Gal(L/K)

.
In fact, we can say something quite interesting right off the bat: if there is an automorphism σ ∈ Gal(L/K)

such that σ(Q) = Q′, then it is easy to see that D(Q′/P ) = σD(Q/P )σ−1 (one can show this by proving
injectivity followed by showing that both decomposition groups have equal orders). This fact actually means
that the decomposition groups of the primes lying over P form a conjugacy class of Gal(L/K)!

However, to show both decomposition groups above have the same order, we have to calculate their
orders first! We know that the orbit of the element Qi is basically each Qj for 1 ≤ j ≤ r. By the so-called
orbit-stabilizer theorem, the order of the stabilizer, that is, the decomposition group, is just the order of the
Galois group - n = ref - divided by the order, r; thus |D(Q/P )| = ef , which is true of any prime ideal Q
lying over P .

Now, the most interesting thing about the decomposition group is its relation to the Galois group of
residue fields. Since any σ ∈ D(Q/P ), σ(Q) = Q induces an automorphism of the residue field OL/P ; for
any a + bQ ∈ OL/Q, the automorphism maps it to σ(a + bQ) = σ(a) + σ(b)σ(Q) = a′ + b′Q ∈ OL/Q.
Moreover, since σ ∈ Gal(L/K), σ fixes K; in particular, it fixes OK and thus OK/P as well. Thus, there is
a natural homomorphism

D(Q/P ) −→ Gal(OL/Q : OK/P )

. In fact, this homomorphism is surjective.
Because of this homomorphism, it is natural to wonder if we can create an isomorphism. Luckily, we can

apply the first isomorphism theorem: if we let I(Q/P ) be the kernel of the homomorphism, then

D(Q/P )/I(Q/P ) ∼= Gal(OL/Q : OK/P )

. Since I(Q/P ) is the kernel, we can give it a more explicit definition:

I(Q/P ) = {σ ∈ D(Q/P ) | σ(a) ∼= a (mod Q) for all a ∈ OL}

. This subgroup of the decomposition group is known as the inertia group.
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To find the order of the inertia group, recall that |D(Q/P )| = ef and Gal(OL/Q : OK/P ) = [OL/Q :
OK/P ] = f , so |I(Q/P )| = ef/f = e. Just like with the decomposition group, the inertia groups of the
ideals of the primes lying over P form a conjugacy class. The intriguing thing is that if Gal(L/K) is abelian,
each of these conjugacy classes only contain one element! Thus, the decomposition and inertia groups do
not depend on the prime ideal lying above P in this case. Now, we can go even further to define LI to
be the inertia field, i.e., the fixed field of the inertia group acting on L/K. Similarly define LD to be the
decomposition field. Then, [L : LI ] = |I(Q/P )| = e and [L : LD] = |D(Q/P )| = ef by definition. From this,
we can also deduce that [LD : K] = ref

ef = r. Now, we have the tower of fields K ⊂ LD ⊂ LI ⊂ L.

Proposition 3.1. We make the following observations:
(i) Every prime P of K splits into r primes in LD, each with e = 1. Essentially, this is the ”stage” where

all the splitting occurs.
(ii) In the extension LI/LD, each of these r primes remains inert. In this ”stage,” nothing really goes

on.
(ii) In the extension L/LI , each of these primes finally ramifies (i.e., can be factored into a prime raised

to the eth power, where e is the ramification index of that prime.

Proof. When Gal(L/K) is abelian, D(Q/P ) is normal, so by Galois Theory, LD/K is Galois as well. We
know that [L : LD] = |D(Q/P )| = ef , but also that [L : LD] = e(Q|QD)f(Q|QD), where e(Q|QD) ≤ e and
f(Q|QD) ≤ f . Thus, they are equal, and so e(QD|K) = e/e(Q|QD) = 1. Similarly, f(QD|K) = 1, proving
(i).

Next, we show that f(Q|QI) = 1 by showing that Gal(OL/Q : OLI/QI) is trivial. Essentially, consider
g(x) =

∏
σ∈I(Q/P )

(x−σ(a)), for some a ∈ OL/Q that corresponds to θ ∈ OL/Q. Observe that g(x) actually has

coefficients in OLI , and so ḡ(x) obtained by taking the coefficients of g(x) modulo Q actually has coefficients
in OLI/QI . But observe that σ(a) ∼= a ∼= θ (mod Q), so ḡ(x) = (x− θ)m, where m = |I(Q/P )|. This means
that every automorphism of the Galois group of these residue fields merely sends θ to itself, indicating that
it is trivial; thus, f(Q|QI) = 1. Together with f(QD|P ) = 1, we see that f(QI |QD) = f . From here, Galois
Theory shows that [LI : LD] = f , so e(QI |QD) = 1, proving (ii). Thus, we are left with e(Q|QI) = e, proving
(iii).

Corollary 3.2. D(Q/P )/I(Q/P ) ∼= Gal(OL/Q : OK/P ), and so is cyclic of order f .

Corollary 3.3. We have the following statements:
(i) LD is the largest field whose inertial and ramification degrees are both 1.
(ii) LD is the smallest field for which Q ∈ OL is the only prime lying over QD ∈ ODL .
(iii) LI is the largest field whose ramification degree is 1.
(iv) LI is the smallest intermediate field for which Q ∈ OL totally ramifies over QI , i.e., e(Q|QI) = [L :

LI ].

At last, we come to a theorem we will encounter again when we touch upon class field theory.

Theorem 3.4. Let L and M be two extensions of the number field K. If the prime ideal P ∈ OK is unramified
in both L and M , then it is unramified in the composite field LM . Moreover, if P splits completely (meaning
ramification and inertial degrees are both 1), then it splits completely in LM .

Proof. Since the corresponding primes lying over P in each of L and M have ramification index 1, they
are subfields of the inertial field, the maximal field whose ramification index is 1. Thus, L ∪M = LM is a
subfield of the inertial field as well, meaning it is unramified.

For the second part, observe that L and M are subfields of the decomposition field this time, since the
decomposition field is the maximal field whose ramification index and inertial degree is 1. Thus, LM is also
a subfield of the decomposition field, and so P splits completely in it.

Before venturing any further, we now define the Frobenius automorphism - an invaluable tool for class
field theory later.

Suppose that K ⊂ L is unramified, meaning I(Q/P ) = 1. This means D(Q/P ) ∼= Gal(OL/Q : OK/P ),
which is a cyclic group of order f that is generated by the automorphism that sends every x ∈ OL/Q to
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x||P ||, where ||P || denotes the norm of P . The corresponding automorphism φ ∈ D(Q/P ) has the property
that

φ(x) ∼= x||P || (mod Q)

for every x ∈ OL. Similar to before, the collective set of Frobenius automorphisms of prime ideals lying over
P forms a conjugacy class. Then, if Gal(L/K) is abelian, each prime Q lying over P has the same Frobenius
automorphism, so by the Chinese Remainder Theorem, we have

φ(x) ∼= x||P || (mod POL)

.

4 A Nice Algorithm to Factor Ideals

This section is devoted to proving one rather interesting theorem that we will touch upon later. The title
of this section probably gives it away.

We start with our field extension K ⊂ L of degree n; by the Primitive Element Theorem, we have some
α ∈ L, and actually, some α ∈ OL of degree [L : K] = n, such that L = K(α). Now, we fix some prime
P of OK and for any h ∈ OK [x], let h̄ be the corresponding polynomial in (OK/P )[x] due to reduction of
coefficients mod P . Now, if g(x) is the monic irreducible polynomial of α over K, then since α is algebraic,
the coefficients of g are also algebraic, meaning they lie in OK (they can all be written in terms of α and its
conjugates). Thus, g(x) ∈ OK [x], and so ḡ(x) ∈ (OK/P )[x], where we can uniquely factorize it into distinct
monic irreducible polynomials as

ḡ(x) = ḡ1(x)e1 ḡ2(x)e2 · · · ḡr(x)er

. At last, we are ready to state and prove our theorem:

Theorem 4.1. Let p be the prime lying under P in Z such that p - |OL/OK(α)|. Then, the prime decompo-
sition of POL is given by

Qe11 Q
e2
2 · · ·Qerr

where Qi is the ideal (P, gi(α)) in OL, i.e.

Qi = PS + (gi(α))

Also, f(Qi|P ) is the degree of gi.

Proof. Let fi be the degree of gi, which is also the degree of ḡi. We will prove the following:
(i) For each Qi, either Qi = OL or OL/Qi is a field of order |OK/P |fi .
(ii) Qi +Qj = OL whenever i 6= j.
(iii) POL | Qe11 Q

e2
2 · · ·Qerr .

Assuming the result holds, we can prove our result; rearrange the ideals so that Q1, Q2, · · · , Qs are the
proper ideals, and the rest are equal to OL (in fact, we will prove that r = s). Clearly, each Qi lies over P . By
(i), we would have that fi = f(Qi|P ) as desired. (ii) shows us the Qi are distinct and prime to one another.
(iii) becomes PS | Qe11 Q

e2
2 · · ·Qess , so PS = Qd11 Q

d2
2 · · ·Qdss , where each di ≤ ei. The ramification-inertial

degree theorem tells us that f1d1 + f2d2 + · · · + fsds = n, but also the degree of ḡ is easily seen to be
e1f1 + e2f2 + · · · + erfr = n, meaning that r = s and di = ei, and we would have our result. It remains to
prove these 3 statements.

Proof of (i): Let Fi = ((OK/P )[x])/ḡi. Observe that this is a residue field with coefficients taken modulo
P . Now, consider the homomorphism

OK [x] −→ Fi

It is defined the obvious way - by reducing coefficients mod P and then reducing mod the ideal (ḡi). This
map is surjective and it is not hard to see that the kernel of this map is the ideal (P, gi). Thus, we have an
isomorphism

OK [x]/(P, gi) −→ Fi
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This actually means that (P, gi) is a maximal ideal. Now, we can also map

OK [x] −→ OL

by the simple substitution x → α; this is a ring homomorphism. Clearly, (P, gi) is contained in the kernel,
and since it is maximal, the kernel must either be (P, gi) or all of OK [x]. If it is the latter, Qi = S. In the
case of the former, we show this map is surjective by proving OL = OK [α] + Qi; in fact, we can prove the
even stronger statement OL = OK [α] + pOL. This follows because the index of OL = OK [α] + pOL must
be a common divisor of |OL/OK(α)| and |OL/pOL|. But their common divisor is just 1 since the latter is a
power of p and the former is not divisible by p (refer to theorem statement above), so the index is 1. Thus,
our map is onto, meaning OL/Qi ∼= OK [x]/(P, gi) ∼= Fi, which has order |OK/P |fi .

Proof of (ii): Since the ḡi are distinct in the domain (OK/P )[x], there exist h and k over OK [x] such
that ḡih̄+ ḡj k̄ = 1, so

gih+ gjk ∼= 1 (mod P [x])

, meaning that if we replace x with α, we obtain

gi(α)h(α) + gj(α)k(α) ∼= 1 (mod POL)

. It follows that 1 ∈ (P, gi, gj) = Qi +Qj , so the sum of these ideals must be S.

Proof of (iii): To make life easy, let γi = gi(α). With Qi = (P, γi), it is evident that Qe11 Q
e2
2 · · ·Qerr is

contained in, and thus divisible by, (P, γe11 γ
e2
2 · · · γerr ). We claim that this ideal is just POL. To prove this,

we will show that γe11 γ
e2
2 · · · γerr is in POL. Clearly, since

ḡ(x) = ḡ1(x)e1 ḡ2(x)e2 · · · ḡr(x)er

we have

g(x) ∼= g1(x)e1g2(x)e2 · · · gr(x)er (mod P [x])

, so the simple substitution x→ α just like in (ii) gives us

g1(α)e1g2(α)e2 · · · gr(α)er ∼= γe11 γ
e2
2 · · · γerr ∼= g(α) ∼= 0 (mod POL)

, as desired. This proves (iii), and we are done.

Why did we bother to prove this theorem? So that we would have the following corollary under our belt:

Corollary 4.2. Let K ⊂ L be a Galois extension, and let α be in OL such that L = K(α). Let f(x) be the
monic minimal irreducible polynomial for α over K so that f(x) ∈ OK [x]. If P is prime in OK and f is
separable modulo P , then we have the following results:

(i) If f(x) = f1(x)f2(x) · · · fr(x) (mod P ), where each fi is distinct and irreducible mod P , then Qi =
(P, fi(x)) is a prime ideal of of OL, Qi 6= Qj for i 6= j, and

POL = Q1Q2 · · ·Qr

Furthermore, each of the fi has degree f , where f is the inertial degree of the extension (unique because the
extension is Galois).

(ii) P is unramified in L.

(iii) P splits completely in L if and only if f(x) ∼= 0 (mod P ) has a solution x ∈ OK .

Proof. Observe that (i) follows immediately from the theorem above; it is merely a special case. (ii) is an
immediate consequence of (i) because each prime lying over P has ramification index 1. Finally, (iii) also
follows quickly because it implies each fi is monic, meaning f = 1, so this, along with e = 1, tells us that P
splits completely in L.
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5 Introduction to Quadratic Fields

Let us now apply some of our theory to quadratic number fields - fields of the form K = Q(
√
N), where

N 6= 0, 1 is a squarefree integer. Its discriminant, dK , is defined to be N if N ∼= 1 (mod 4) and 4N otherwise.

Using the discriminant, one can show that the ring of integers in K, OK is Z[dK+
√
dK

2 ]. Now, we describe
the behavior of prime ideals in OK .

Proposition 5.1. Let K be a quadratic number field of discriminant dK , and let α → α
′

be the nontrivial
automorphism of its Galois group (over Q). Let p be a prime in Z. Also, let (a/p) denote the Legendre symbol,
where p is prime.

(i) If (dK/p) = 0, then pOK = P 2, for a prime ideal P ∈ OK .
(ii) If (dK/p) = 1, then pOK = PP ′, where P 6= P ′ are primes in OK .
(iii) If (dK/p) = −1, then p remains prime in OK .

Proof. For (i), let P = (p,
√
dK). Squaring this ideal shows that it is indeed equal to p. Moreover, it is seen

to be prime by applying the theorem ref = n = [K : Q] = 2.
For part (ii), if (dK/p) = 1, then x2 ∼= dK (mod p) has a solution, meaning f(x) = x2 − dK is separable

mod p and congruent to 0 modulo P for a suitable x ∈ Z. Thus, by part (iii) of the corollary from Section
5, p splits completely in K, i.e., p = PP ′. For part (iii), if (dK/p) = −1, then f(x) = x2 − dK is irreducible
mod p, so part (ii) of the corollary from Section 5 tells us that p remains prime in K.

Corollary 5.2. Let K be a quadratic field with discriminant dK and p be a prime in Z.
(i) p ramifies in K if and only if p | dK .
(ii) p splits completely in K if and only if (dK/p) = 1.

6 Introduction to Hilbert Class Field Theory

We begin with some basic definitions.

Definition 6.1. We call an extension K ⊂ L abelian if it is Galois and Gal(L/K) is abelian.

Next, note that prime ideals of OK are finite primes. To make Hilbert class field theory work out, we
also define infinite primes.

Definition 6.2. A real infinite prime is an embedding σ : K → R, while a complex infinite prime is a pair
of complex conjugate embeddings σ, σ̄ : K → C. An infinite prime σ ∈ K is said to ramify in L if it is real
but has an extension to L that is complex. Thus, an extension K ⊂ L is unramified if all finite and infinite
primes do not ramify.

Now, we are ready to state a theorem that indicates the existence of the Hilbert class field. For now, we
will not prove it, so feel free to take it as a definition.

Theorem 6.3. Given a number field K, there is a finite Galois extension L such that L is an unramified
abelian extension of K and any unramified extension of K lies in L.

The field L above is called the Hilbert class field of K and is clearly unique. To unlock the full power
of this field, we relate it to the Artin symbol (discussed later). As a first step, we revisit the Frobenius
automorphism.

Lemma 1. Let P be a prime of OK unramified in L. If Q is a prime of OL containing P , then there is a
unique element σ ∈ Gal(L/K) such that for any a ∈ OL,

σ(a) ∼= aN(P ) (mod Q)

where N(P ) = |OK/P | is the norm of P .



8 Shaunak Bhandarkar

Proof. This lemma essentially asks us to prove the existence of the Frobenius automorphism. To do this,
we make use of D(Q|P ) and I(Q|P ), the decomposition and inertia groups. Recall that any σ ∈ D(Q|P )
induces an automorphism σ̄ of Gal(OL/Q : OK/P ). Since P is unramified in L, the inertia group is trivial,
meaning that D(Q|P ) ∼= Gal(OL/Q : OK/P ). The structure of the latter Galois group is quite clear: since it
is finite and OK/P consists of N(P ) = q elements, it is actually cyclic with the canonical generator x 7→ xq;
thus, there is a unique element of D(Q|P ) that maps to the Frobenius automorphism, meaning it contains
an element σ such that

σ(a) ∼= aN(P ) (mod Q)

for all a ∈ OL. It is clearly unique by the nature of this isomorphism.

Now, we visit a powerful tool - one that we will constantly rely upon going forwards.

Definition 6.4. The unique element σ of the previous lemma is known as the Artin symbol, named after

famous mathematician Emil Artin. It is denoted by (L/KQ ) and satisfies the crucial property

(
L/K

Q
)(a) ∼= aN(P ) (mod Q)

, where P = Q ∩OK .

The Artin symbol has the following useful properties:

(i) If φ ∈ Gal(L/K), then (L/Kφ(Q) ) = φ(L/KQ )φ−1. (This is similar to conjugacy class formed by decompo-

sition groups.)

(ii) The order of (L/KQ ) is just f = f(Q|P ), the inertial degree. This follows from the Artin symbol being
the generator of a cyclic group of order f .

(iii) P splits completely in L if and only if (L/KQ ) = 1. Both conditions are equivalent to e = f = 1, and
so are equivalent themselves.

In fact, (i) tells us that if L is an abelian extension of K, then the conjugacy class of the Artin symbols

is trivial, meaning it does not depend on the prime Qi lying over P . Thus, we may denote it by (L/KP ) in
this case.

We can go even further! The Artin symbol actually generalizes the nth degree Legendre symbol.

Theorem 6.5. Let K be a number field containing a primitive nth root of unity, and let a ∈ OK and P be
a prime ideal of OK for which na 6∈ P . Now, let L = K( n

√
a); this is an abelian extension of K. Then, we

have

(
L/K

P
)( n
√
a) = (

a

P
)n

n
√
a

Proof. First, we observe that f(x) = xn − a is separable modulo P . In fact, f is separable if and only if P
does not divide the discriminant of f . The discriminant of f , when computed, is seen to be a power of n, so
only primes dividing n divide the discriminant. Luckily, for us, P cannot divide the discriminant due to the
condition na 6∈ P . Thus, f is separable mod P . By the corollary in Section 5, we learn that P is unramified
in L. Then, we can take some prime Q lying over P and invoke the Artin symbol:

(
L/K

P
)( n
√
a) = ( n

√
a)N(P ) (mod Q) and

a
N(P )−1

n ∼= (
a

P
) (mod P ), meaning

(
L/K

P
)( n
√
a) ∼= (a

N(P )−1
n )n n

√
a ∼= (

a

P
)n

n
√
a (mod Q)

as desired.
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Now, when K ⊂ L is an unramified abelian extension, things are even nicer: every finite prime of OK is
unramified in OL, so it has an Artin symbol! To exploit this, let IK be the set of fractional ideals of OK .
Then, for any a ∈ IK , a can be uniquely factored into a product of prime ideals:

a =

r∏
1

P rii

and we may define the generalized Artin symbol to be

(
L/K

a
) =

r∏
1

(
L/K

Pi
)ri

The Artin symbol thus defines a homomorphism

(
L/K

a
) : IK −→ Gal(L/K)

This homomorphism is known as the Artin map. We will revisit this ever-so-important result in depth when
we explore Artin Reciprocity.

7 Genus Theory for Field Discriminants

This is a bit of a side topic, but it is crucial because it touches upon the power of the Hilbert class
field. Moreover, it produces the same results as Genus Theory (relating to binary quadratic forms and their
genera) using deeper underlying mechanisms.

We will start with a few deep theorems (of class field theory) that we will explore (and prove parts of)
in depth later.

Definition 7.1. Recall that the ideal class group, C(OK), is the group consisting of classes of ideals of
IK . In particular, the set of principal ideals is the identity, and the inverse law holds because for any ideal
I ∈ OK , there is a J ∈ OK such that IJ is principal. In fact, we can go even further and define C(OK) as
the quotient group IK/PK , where PK denotes the set of principal ideals in IK .

Theorem 7.2. If L is the Hilbert class field of K, then the Artin map is surjective and its kernel consists
of the set of principal ideals of IK , PK . In particular, since IK/PK ∼= C(OK), we have the isomorphism

C(OK) ∼= Gal(L/K)

This theorem, at the very least, gives us an idea of where the term ”class field” comes from! We also have
the following important corollary:

Corollary 7.3. Given a number field K, there is a one-to-one correspondence between the unramified abelian
extensions M of K and the subgroups H of C(OK). Furthermore, if the extension K ⊂ M corresponds to
H ⊂ C(OK), then we have the isomorphism

C(OK)/H ∼= Gal(M/K)

This corollary is very reminiscent of the Fundamental Theorem of Galois Theory; it is deduced based on
that same logic.

Corollary 7.4. If L is the Hilbert class field of K and P is a prime ideal in K, then P splits completely in
L if and only if P is a principal ideal.

Proof. Observe that P splits completely in L if and only if (L/KP ) = 1. Since the Artin map induces the

isomorphism C(OK) ∼= Gal(L/K), the trivial element of Gal(L/K), (L/KP ), corresponds to the trivial element
of C(OK), PK . This directly implies that P is principal.
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We now get to an important theorem of the quadratic field case.

Theorem 7.5. Let K be an imaginary quadratic field. Then, we have the following two results:
(i) If f(x, y) = ax2 + bxy + cy2 is a primitive positive definite quadratic form of discriminant dK , then

(a, −b+
√
dK

2 ) is an ideal of OK .

(ii) The map sending f(x, y) to (a, −b+
√
dK

2 ) induces an isomorphism between C(OK) and C(dK), the
form class group. Thus, the order of C(OK) is just h(dK), the class number.

Now, we get to the main theorem of genus theory, which we shall prove using the Hilbert class field.

Definition 7.6. The principal genus of C(dK) maps to a subgroup of C(OK). Then, under the isomorphism

C(OK)/H ∼= Gal(M/K)

this subgroup determines a unique field M known as the genus field of K.

Theorem 7.7. Let K be an imaginary quadratic field of discriminant dK < 0. Moreover, let µ denote the
number of primes dividing dK and let p1, p2, · · · , pr be the odd primes dividing dK so that µ = r or µ = r+1.
Also, define p∗i = (−1)pi−1pi. Then:

(i) The genus field of K is the maximal unramified extension of K which is an abelian extension of Q.
(ii) The genus field of K is M = K(

√
p∗1,

√
p∗2, · · · ,

√
p∗r).

(iii) The number of primitive positive definite binary quadratic forms of discriminant dK is 2µ−1.
(iv) The principal genus of C(dK) consists of the squares of classes.

Proof. We shall prove (i), (ii), (iii), and part of (iv). To start, let L be the Hilbert class field of K and let
M be the unramified abelian extension of K corresponding to C(OK)2 ⊂ C(OK). We claim that M is the
maximal unramified extension of K that is abelian over Q.

To see why, let M ′ be an unramified abelian extension over Q. Then, M ′ is abelian over K as well,
meaning that we have the following hierarchy of fields:

Q ⊂ K ⊂M ′ ⊂ L

Additionally, note that G = Gal(L/Q) is Galois since τ ∈ G, where τ denotes complex conjugation (why?).
This directly implies that the intersection of all fixed fields of automorphisms is none other than Q, meaning
L is Galois over Q. Then, since M ′ is abelian over Q, we have [G,G] ⊆ Gal(L/M ′), where [G,G] is the
commutator subgroup of G. Also, since [G,G] ⊆ Gal(L/K) since the latter has index 2 in G. Thus

[G,G] ⊆ Gal(L/M ′) ⊆ Gal(L/K)

From this, it follows that the maximal unramified abelian extension over Q is the one that corresponds to
[G,G]! Using the Artin Map above, we know that Gal(L/K) corresponds to C(OK), so it remains to show
that [G,G] corresponds to C(OK)2.

Next, since τ ∈ G, we may say G ∼= Gal(L/K) × Z/2Z, where Z/2Z acts by conjugation by τ . Then,
under conjugation by τ , an ideal of C(OK) is sent to its conjugate because for P ∈ OK , we have

(
L/K

τ(P )
) = τ(

L/K

P
)τ−1

However, for any ideal a ∈ OK , aā is principal meaning that Z/2Z actually acts by sending an element of
C(OK) to its inverse.

Now, C(OK)2 is a normal subgroup (any subgroup of C(OK) is), so we have

G/C(OK)2 ∼= (C(OK)× Z/2Z)/C(OK)2 ∼= C(OK)/C(OK)2 × Z/2Z

Observe that C(OK)/C(OK)2 is abelian; since (ab)−1 = b−1a−1 = ba, it is abelian (here we exploit the fact
that a and b are their own inverses). It follows that G/C(OK)2 is abelian, and so [G,G] ⊆ G/C(OK)2. To
prove the reverse inclusion, note that for a ∈ C(OK),

(a, 1)(1, τ)(a, 1)−1(1, τ)−1 = (a2, 1)
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where τ is just the nontrivial element of Z/2Z. Thus, [G,G] = C(OK)2, so (i) is proved.
For (ii), we note that K ⊂ K(

√
p∗i ) is unramified since this is a quadratic extension with pi|dK and p∗i

∼= 1

(mod 4) (details left to the reader!), so the composite field M∗ = K(
√
p∗1,

√
p∗2, · · · ,

√
p∗r) is unramified as

well, meaning M∗ ⊆ M . To show the opposite inclusion, note that Q ⊂ M ⊂ L correspond to G ⊃ C2
K ⊃ 1

by the Fundamental Theorem of Galois Theory. Thus

Gal(M/Q) ∼= Gal(L/Q)/Gal(L/M) ∼= G/C(OK)2 ∼= C(OK)/C(OK)2 × Z/2Z

and since C(OK)/C(OK)2 ∼= (Z/2Z)x (order of the quotient group is a power of 2), we have that

Gal(M/Q) ∼= (Z/2Z)m

for some m. This means that M = K(
√
a1,
√
a2, · · · ,

√
am), meaning each ai must be a product of some of

the pi’s, meaning that M∗ actually contains M ; thus, the two must be equal (proving (ii)).
In fact, writing M as M = Q(

√
dK ,

√
p∗1,

√
p∗2, · · · ,

√
p∗r), one can see that [M : Q] = 2µ (divide into

cases where dK is congruent to 1 and 0 modulo 4, respectively). From this, it follows that

[C(OK) : C(OK)2] =
1

2
[G : C(OK)2] =

1

2
[M : Q] = 2µ−1

which proves (iii).
To partially prove (iv), we compute the Artin Map

(
L/K

.
) : IK −→ Gal(M/K)

If we let Ki = K(
√
p∗i ), then M is the compositum of the Ki’s, meaning we have the natural injection

Gal(M/K) −→
r∏
i=1

Gal(Ki/K)

Furthermore, we may identify Gal(Ki/K) as ±1, so the Artin Map gives us the homomorphism φ : IK −→
(±1)

r
.

Now, we claim that if a is an ideal of OK prime to 2dK , then φ(a) can be computed with the Legendre
symbol as

φ(a) = ((
N(a)

p1
), (

N(a)

p2
), · · · , (N(a)

pr
))

It suffices to show that

(
Ki/K

pi
)
√
pi = (

N(a)

pi
)
√
pi

Letting B be a prime in OKi
and σ = (Ki/K

pi
), we have

σ(pi) ∼= (
√
p∗i )

N(p) ∼= (p∗i )
N(p)−1

2

√
p∗i (mod B)

. Since N(p) = p or p2, we can separately check each case to see that the expression is equivalent to (N(a)
pi

)
√
pi.

From this, we can make interesting statements, similar to those obtained from regular genus theory; for
example, if dK ∼= 0 (mod 4), then we can see that

C(OK)/C(OK)2 ∼= (±1)
r

8 A Journey through Artin Reciprocity

The time has come to dive deeper into the realm of Artin Reciprocity, which we will jump straight into.
While we will not provide a full proof, we aim to prove partial results as well as special cases of Artin
Reciprocity.
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Definition 8.1. We define PF ,m
+ as the set of principal ideals of F that have positive norm and are ∼= 1

(mod m).

Definition 8.2. We define NK
F (m) as the set of norms of IF that are prime to m.

Theorem 8.3 (Consistency Property). Suppose F ⊆ L ⊆ K and F ⊆ E ⊆ K are number fields with K/F
abelian. Let P be a prime ideal of OF that is unramified in K and Q be a prime ideal dividing P in OK .
Then the prime over Q in L is Q ∩ L = QL and similarly, the prime over Q in E is QE. Then

(
K/E

QE
)|L = (

L/F

P
)f

where |L denotes restriction to L and f = f(QE |P ).

Proof. Let σP = (L/FP ) so that for any α ∈ OL, σ(α) ∼= (α)N(P ) (mod QL). Now, let QE
= (K/EQE

) so

that QE
(α) ∼= (α)N(QE) (mod Q) for all α ∈ OK . Then, if α ∈ OL, QE

(α) ∼= (α)N(QE) (mod Q ∩ L); since
Q ∩ L = QL, we have QE

|L(α) ∼= (α)N(QE) (mod QL). Now, N(QE) = N(p)f , so

σfP (α) ∼= (α)N(P )f ∼= (α)N(QE) ∼=QE
|L(α) (mod QL)

It follows that σfP =QE
|L, as desired.

By the consistency property, we have

(
K/E

QE
)|L = (

L/F

P
)f = (

L/F

P f
) = (

L/F

NF
E (QE)

)

so multiplicativity gives

(
K/E

U
)|L = (

L/F

NF
E (U)

)

where U is any fractional ideal in IE(m), the set of fractional ideals of E that are prime to m, where m, the
modulus, is the product of all the ramified primes in E.

Corollary 8.4. Using the same terminology as above,

(
K/F

P
)|L = (

L/F

P
)

Proof. Simply let E = F in the theorem above!

Corollary 8.5. We have

(
K/E

QE
) = (

K/F

NF
E (QE)

)

Proof. Simply let L = K in the theorem above!

Corollary 8.6. We have that

NK
F (m) ⊆ ker(A : IF (m) −→ Gal(K/F ))

Proof. Letting L = K = E gives

(
K/F

NF
K(Q)

) = (
K/K

Q
)|K = 1

Thus, if U is any ideal of K prime to the ramifying primes in K/F , then factoring U gives

(
K/F

NF
K(U)

) = 1

and the result follows.

Theorem 8.7 (Artin Reciprocity). Let K/F be an abelian extension of number fields, and let m be an ideal
of OF that is divisible by all the ramifying primes. Let G = Gal(K/F ). Then

(i) The homomorphism A : IF (m) −→ G is surjective.
(ii) NF

K(m) ⊆ ker(A).
(iii) The ideal m can be chosen so that it is divisible only by the ramifying primes and satisfies PF ,m

+ ⊆
ker(A).
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9 Into the Realm of Complex Multiplication and Beyond

A lot of the mathematics we have done up to this point take the existence of the Hilbert class field for
granted - how do we even compute the Hilbert class field? Luckily, we have an interesting method to do so (at
least for quadratic number fields): Complex Multiplication. This essentially exploits the group property of
elliptic curves as well as features such as the j-invariant to actually compute the Hilbert class field. Although
beyond the scope of this text (at the moment), Complex Multiplication forms a rather beautiful connection
between algebraic number theory and the theory of elliptic curves. Still, much is unknown about computing
the Hilbert Class Fields of higher degree number fields.
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