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Public key cryptography is a system in which there are two keys: a public
key which is available to everyone and a private key which is only known to
a select few. This has two functions, authentication to verify that the sender
of the message has the private key and encryption, which can be accomplished
with the public key. One example of this is the RSA cryptosystem. This system
utilizes the same public and private key setup. It was one of the first public
key cryptosystems and continues to be used on a large scale for secure data
transmission.

Definition 1. RSA Cryptosystem The RSA cryptosystem is designed as follows.
We will let Alice be the sender of the encrypted message and Bob the recepient.
Then, Bob will choose two private primes p and q and let n = pq be public. Then
let e € Z be positive so that ged(e, ¢p(n)) = 1 which is the public key. Then he
finds the private key d € Z such that de = 1 (mod ¢(n)). This is finding the
inverse of e (mod ¢(n)). Then, if Alice wants to encrypt some number m < n,
she can use the function ¢ = m® (mod n). If Bob want to decrypt it, he can
find ¢ (mod n). The proof can be split into two different cases, depending on if
n and a are coprime. If they are, then because of Euler’s theorem which states
that if n and a are coprime positive integers, then a®™) = 1 (mod n). This
can be applied to the RSA algorithm. Because ed = 1 (mod ¢(n)) , then ed =
1 + bp(n) for some b. Plugging that back in, we have that me = m!+to() =
m!'mb™) = m (mod n). Ifn and a are not comprime, then ifk =1 (mod ¢(n)),
a* = a (mod n), a slight variation of Euler’s Theorem. Then because ed = 1
(mod ¢(n)), m*® =m (mod n) concluding the proof.

FEzample We choose two distinct primes p = 59 and ¢ = 53. Then n =
pg = 59(53) = 3127. ¢(n) = (p — 1)(¢ — 1) = 3016. We can select any e
such that ged(e,¢(n)) = 1 so we let e = 3. We find that the inverse of e
(mod ¢(n)) = 2011. Now we have the public and private keys. The public key
is e = 3 and the private key is d = 2011. Now that we have the keys, we can
encrypt a phrase. We can encrypt HI. We can convert the letters to numbers
based on lexicographical order. This would mean that H = 8 and I = 9. Then we
can add a 0 between the values of the letters so that the phrases remain unique.
We are then encrypting 809.Then the crypted data is ¢ = 809 (mod 3127).
The encrypted data is then equal to 2108. Now we can assume the role of the
decrypter. The decrypted data is equal to 21082°!1 (mod 3127). This is equal to
809 which is the initial value that we plugged in.

The RSA algorithm can be broken in several ways. If the same encryption
key e is chosen for e or more recipients with different p and ¢, then a system
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of equations can be set up and because of the Chinese Remainder Theorem, a
solution is then guaranteed.

Example One of the common e values in the past has been 3. If the same mes-
sage is sent to 3 or more recepients, it can be found with the help of the Chinese
Remainder Theorem. We can let m be the message and c¢,, be the corresponding
ciphertext for a modulo,. This results in the following system of equations.

c = (mod ny)

m3
c2 =m? (mod ny)
m3

c3 = (mod ng)

With the Chinese Remainder Theorem, we find that @ = m? (mod nq *ng *n3).
If m is less than nq,n2, and ng, then a cube root can be taken without regards
to modulus yielding the contents of the message. However, if this is not true,
it becomes more difficult but a solution can still be found. This is why larger e
values are used such as 216 + 1.

A hacker can also use the fact that the RSA cryptosystem is multiplicative.

Definition 2. An Attack on RSA The process for finding the original message
using the fact that the RSA cryptosystem is mutliplicative is as follows. Being
multiplicative in this case means that m§m§ = (myms)® (mod n). This can be
used in the following way. If a hacker is given a ciphertext ¢ = m® (mod n), then
the hacker could ask the holder of the private key to decrypt another unsuspicious
looking key ¢ = cr® (mod n) for a r that is chosen specifically by the hacker.
Then, because of the multiplicative property, ¢’ is the encryption of mr (mod n).
This attack will result in the hacker knowing mr (mod n) from which he can find
the original message by multiplying mr by the inverse of r (mod n).

The soundness of the RSA cryptosystem is based on several key factors, the
difficulty of factoring very large numbers and finding the ath root modulo n. The
Diffie-Hellman key exchange is another example of public key cryptography. Its
primary purpose is the exchange of private keys over a public network. Later,
these keys can be used to encrypt and decrypt messages. It works in the follow-
ing way.

Definition 3. Diffie-Hellman key exchange Both people agree on some modulus
which is a prime p and a primitive base in that modulus g. One person chooses
a secret number a and sends the other A = g® (mod p). Another person chooses
a secret number b and then sends the other B = g® (mod p) in the same evact
method. The first person will compute B* (mod p) and the second person will
compute A® (mod p). Both of these numbers will be the same. This is true be-
cause A’ = g% = gb* = B (mod p). However, for smaller modulo, it is easy to
find a and b since there are only so many cases. That is why it is necessary to
select a large prime to make it secure.
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Ezxample Alice and Bob agree to use a modulus p = 23 and base g = 5. Then
Alice chooses a secret integer a = 4 and sends Bob A = ¢g* (mod p) or 4. Then
Bob chooses a secret integer b = 3 and sends Alice B = g® (mod p) or 10. Alice
computes s = B® mod (p) or 18 and Bob computes s = A® (mod p) or 18. Now
Alice and Bob share the secret 18.

However, for smaller modulo, this is easy since there are only so many cases.
That is why it is necessary to select a large prime to make this a secure cryp-
tosystem. Just to put it into perspective, if p is a prime of at least 600 digits,
then the best computers today would not be able to find what a is equal to given
g, p, and g% (mod p). g does not need to be a large number and small numbers
most generally suffice. This process can be extended to more than two parties
in the process as follows.

Definition 4. Extension for RSA to more than two people The people select the
parameters p and g together. Then each person will choose their own private
keys. In this case, we can follow the process if there are 3 parties. Each person
will choose their private keys called a, b, and c. Alice will compute g* (mod p)
and sends it to Bob. Then Bob computes (g%)® = ¢g*® (mod p) and sends it to
Carol. Carol computes (g°°)¢ = g?¢ (mod p) and keeps it secure. Bob will then
compute g® (mod p) and send it to Carol. Carol computes (g°)¢ = g*¢ (mod p)
and sends it to Alice. Alice computes (g*°)¢ = g?*¢ (mod p). Carol computes g¢
(mod p) and sends it to Alice. Alice computes (g¢)* = ¢°® (mod p) and send it
to Bob. Bob computes (g°*)® = g®¢ (mod p) and keeps it secure. After all of
this has been transferred, Alice, Bob, and Carol will all have the secret number
g (mod p). Even if there is someone trying to intercept the messages, if they
just have g* (mod p), ¢g* (mod p), ¢g¢ (mod p), g** (mod p),g** (mod p), and

g" (mod p), it is not possible to combine them to find g°*° (mod p).

There are a variety of different public key cryptosystems and transfer meth-
ods but ultimately, many of them rely heavily on number theory, especially
modular arithmetic and famous results such as Euler’s Theorem.
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