
NUMBER THEORY WEEK 10: CONTINUED FRACTIONS

LORENZO AND SOPHIA WOLCZKO

1. Introduction

Continued fractions are an interesting way of approximating rational and irrational num-
bers. Not only do they have some interesting properties that make then useful for represent-
ing real numbers, but the manner in which they are created exactly parallels the Euclidean
Algorithm. In this paper, we will begin in section two by outlining some basic terms used
for communication about continued fractions. For example, we will address exactly what
a continued fraction is defined to be. In section three, we will discuss the Euclidean Algo-
rithm and one aspect of its relationship with continued fractions. In the fourth section, we
will prove a couple of theorems about representing real numbers, rational and irrational, as
continued fractions. Namely, we will prove that a number is rational if and only if it can
be expressed as a simple continued fraction and that any irrational number is equal to the
limit of an infinite continued fraction (terms to be defined in section two). Finally, we will
conclude with some interesting examples of irrational, namely transcendental, numbers and
their continued fraction expansions.

2. Definitions and Notation

First of all, we need to define a continued fraction.

Definition 2.1. A continued fraction is of the form

a0 +
b1

a1 + b2
a2+...

[4]

Definition 2.2. A continued fraction of the above form where bi = 1, a0 ∈ Z, and ai is a
positive integer for all positive integers i is called a simple continued fraction. [4]

We will only be studying simple continued fractions in this paper.

Definition 2.3. A continued fraction where there are finitely many ai, bi is called a finite
continued fraction. Alternately, a continued fraction that never terminates is called an
infinite continued fraction.[4]

For notation purposes, we will denote

[a0; a1, a2, a3, ...] = a0 +
1

a1 + 1
a2+

1
a3+...

Definition 2.4. If we have the continued fraction A = [an; an−1, an−2, an−3, ...a0], and we
label our term such that 1

a0
= c0,

1
a1+c0

= c1, etc., ck is called the kth value of A.
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Definition 2.5. The continued fraction [a0; a1, a2, . . . , ak] where k is a non-negative integer
less than or equal to n is called the kth convergent of the continued fraction [a1; a2, a3, ..., an].
The kth convergent is denoted by Ck. [4]

Note that a0 is the only term outside of the fraction. If a0 = 0, the value of the entire
continued fraction will be less than one but greater than zero. If a0 ≥ 1, the continued
faction will be greater than one. It is trivial to prove this, but we include the proof anyway.

Proof. We have the continued fraction A = [an; an−1, an−1, an−3, ...a0]. Let us label our term
such that 1

a0
= v0,

1
a1+v0

= v1, etc, such that the vi’s are the ith values of A. We can prove
our statement using induction. Since a0 is an integer greater than or equal to 1, v0 will be
greater than zero and less than or equal to one. We will assume that for some i > 0, vi is
greater than zero and less than or equal to one. Thus, since ai is also an integer greater than
or equal to 1, ai+1 + vi will be greater than one. Thus, this sum’s reciprocal, vi+1, will be
less than one and greater than zero. Thus, by induction, the final vn = A − an will be less
than one but greater than zero. Ergo, if an ≥ 1, A ≥ 1, and if an = 0 (it cannot be between
zero and one, since it must be a non-negative integer), 0 < A < 1. �

3. The Euclidean Algorithm [2]

It’s worth noting that the Euclidean algorithm is related to continued fractions. To see
this, consider integers a, b where a, b ∈ Z and b 6= 0. We have

a

b
= n1 + u1, u1 =

a− n1b

b
where 0 ≤ u1 < 1. So we can see that u1 = r1

b
where r1 is the remainder when dividing b

into a. Doing something similar,

b

r1
= n2 + u2, u2 =

b− n2r1
r1

=
r2
r1

where r1 is the remainder when dividing r1 into b. So, the successive quotients in the
Euclidean algorithm are in fact n1, n2, . . .. Since the Euclidean algorithm terminates in a
zero after a finite number of steps, the continued fraction expansion of any rational must be
finite.

4. Real Numbers as Continued Fractions

We can start by noting that any real number can be written as a continued fraction. If
the number is rational, its continued fraction representations are finite [4]. If the number is
irrational, its representation is infinite [3].

Example. Consider the real number π = 3.1415926 . . .. Let a0 = 3, giving us a remainder of
0.1415926 . . .. So

π = 3 + 0.1415926 . . . .

Further, we can put the second term in continued fraction form to make

π = 3 +
1

7.06251 . . .
.

We can continue the process to get

π = 3 +
1

7 + 1
15+ 1

1+...
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It’s worth noting that the continued fraction ends when the remainder is 1, such as in the
following example.

Example. 56
13

= 1 + 1
3+ 1

4

Every rational number can be represented as a finite continued fraction in exactly two
different ways.[2] The only difference between the two ways is that the last ai, call it ak, is
changed to (ak − 1) + 1

1
. Additionally, every finite continued fraction represents a rational

number. That brings us to a theorem.

Theorem 4.1. A number is rational if and only if it can expressed as a simple finite con-
tinued fraction. [4]

Proof. [4] Let n = p/q be a rational number expressed in lowest terms. Let us apply the
Euclidean Algorithm to p and q. This produces:

p = a1q + r1, 0 ≤ r1 < q

q = a2r1 + r2, 0 ≤ r2 < r1

r1 = a3r2 + r3, 0 ≤ r3 < r2

...

rn−3 = an−1rn−2 + rn−1, 0 ≤ rn−1 < rn−2, rn−2 = an ∗ rn−1
The sequence r1, r2, r3, ..., rn−1 forms a strictly decreasing sequence of non-negative integers
that must converge to zero in a finite number of steps. So, there are at most n ais.
Now, we can rearrange the algorithm into a continued fraction in the following manner.

p

1
= a1 +

1
q
r1

q

r1
= a2 +

1
r1
r2

...
rn−2
rn−1

= an−1 +
1

rn−1

rn

,
rn−1
rn

= an

So we can substitute to get

n =
p

q
= a1 +

1

a2 + 1
a3+

1

a4+...+ 1

an−1+
1
an

For the converse, we can prove by induction that if a continued fraction has n terms, then
it must be rational. Say we have a finite continued fraction A = [an; an−1, ...a0]. The zeroth
value of A is simply 1

a0
, which is one over an integer and therefore rational. Assume that,

for k < n, the the kth value, represented by b, is rational. We can rewrite the k + 1th value
as

A =
1

(k + 1) + b

An integer plus a rational must result in another rational number, and one over a rational
number is another rational number, so the k+1th value must also be rational. Therefore, by
induction, a finite continued fraction with n terms must be equal to a rational number. �
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Every irrational number can be represented as an infinite continued fraction. This can
be seen by applying the same algorithm for finding finite continued fractions to irrational
numbers. It can also be proven.

First, we will need a lemma.

Lemma 4.2. [3] qk ≥ k for all k ≥ 1

Proof. We will induct on k. q1 = a1 ≥ 1 , so the result holds for the base case k = 1 . Take
k > 1 , and assume it holds for numbers ≤ k . We will prove that it holds for k + 1 .

qk+1 = ak+1qk + qk−1 ≥ ak+1 · k + (k − 1) ≥ 1 · k + (k − 1) = 2k − 1 = k + (k − 1) ≥ k + 1.

The last inequality used k ≥ 2 . Thus, by induction, our lemma is true. [3] �

Theorem 4.3. Let x ∈ R be irrational. Let x0 = x , and

ak = [xk], xk+1 =
1

xk − ak
for k ≥ 0.

Then

x = [a0; a1, a2, . . .].

[3]

Proof. First, we will prove by induction that xk is irrational for all k > 0.
Since x is irrational and x0 = x , xk is irrational for k = 0. Assume that k > 0 and that

xk is irrational for k− 1 . We will prove that xk is irrational. Suppose, on the contrary, that

xk =
s

t
, where s, t ∈ Z . Then

s

t
=

1

xk−1 − ak−1
so xk−1 = ak−1 +

t

s
.

ak is always an integer since ak = [xk], which always outputs integers. So, ak−1 +
t

s
is

the sum of an integer and a rational number. Therefore, it is rational, so xk−1 is rational,
producing a contradiction. Thus, if xk−1 is irrational, xk is irrational. By induction, xk is
irrational for all k ≥ 0.

Next, we will prove that ak is are positive integers for k ≥ 1. We already know that the
ak ’s are integers.

Let k ≥ 0 . Since ak = [xk] , the definition of the ceiling function gives

ak ≤ xk < ak + 1.

But xk is irrational, so ak 6= xk . Hence,

ak < xk < ak + 1,

0 < xk − ak < 1,

xk+1 =
1

xk − ak
> 1,
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ak+1 = [xk+1] ≥ 1.

Since k ≥ 0 , this proves that the ak ’s are positive integers for k ≥ 1 . Now, we will prove
that

lim
k→∞

ck = lim
k→∞

[a0; a1, . . . , ak] = x.

First, we will create a formula for x in terms of the p’s, q’s, and a’s.

Then we will find

∣∣∣∣x− pk
qk

∣∣∣∣ and show that it is less than something which goes to 0.

To obtain the formula for x, start with

xk+1 =
1

xk − ak
.

Rearranging, we get

xk = ak +
1

xk+1

.

Write out this equation for a few values of k:

x0 = a0 +
1

x1
x1 = a1 +

1

x2
x2 = a2 +

1

x3
Substituting the second equation of the set into the first gives

x0 = a0 +
1

a1 +
1

x2

.

Substituting x2 = a2 +
1

x3
into this equation gives

x0 = a0 +
1

a1 +
1

a2 +
1

x3

.

In general,

x = x0 = a0 +
1

a1 +
1

a2 + . . .+
1

ak +
1

xk+1

In other words, the xk ’s are the “infinite tails” of the continued fraction.
Recall the recursion formulas for convergents:

pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

The right sides only involve terms up to ak and p’s and q’s of smaller indices. Therefore,
the fractions
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[a0; a1, a2, . . . , ak, xk+1] and [a0; a1, a2, . . . , ak, ak+1, . . .]

have the same p’s and q’s through index k.
Using the recursion formula for convergents, we obtain

x = x0 = [a0; a1, a2, . . . , ak, xk+1] =
xk+1pk + pk−1
xk+1qk + qk−1

.

Therefore,

x− pk
qk

=
xk+1pk + pk−1
xk+1qk + qk−1

− pk
qk

=
xk+1pkqk + pk−1qk − xk+1pkqk − pkqk−1

(xk+1qk + qk−1)qk
=

pk−1qk − pkqk−1
(xk+1qk + qk−1)qk

=
(−1)k

(xk+1qk + qk−1)qk
.

Take absolute values: ∣∣∣∣x− pk
qk

∣∣∣∣ =
1

(xk+1qk + qk−1)qk
.

Now

xk+1 > [xk+1] = ak+1, so xk+1qk + qk−1 > ak+1qk + qk−1 = qk+1.

Therefore,

1

xk+1qk + qk−1
<

1

qk+1

,

1

(xk+1qk + qk−1)qk
<

1

qk+1qk
,∣∣∣∣x− pk

qk

∣∣∣∣ < 1

qk+1qk
.

By our lemma, qk ≥ k and qk+1 ≥ k + 1 , so∣∣∣∣x− pk
qk

∣∣∣∣ < 1

qk+1qk
≤ 1

k(k + 1)
.

Now lim
k→∞

1

k(k + 1)
= 0 , so, by the squeeze theorem,

lim
k→∞

∣∣∣∣x− pk
qk

∣∣∣∣ = 0.

This implies that

lim
k→∞

pk
qk

= x.

[3] �

We can also prove that an infinite continued fraction must be irrational just by using
Theorem 2.1; we know every real number r has a continued fraction representation, and if
the representation is finite r must be rational, so if it is not, then its representation must be
infinite.
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5. Interesting Continued Fraction Representations

A classic example of an infinite continued fraction is the golden ratio

φ =
1 +
√

5

2
= 1 +

1

1 + 1
1+ 1

1+...

= [1; 1, 1, 1, 1 . . .]

We can prove this by setting the infinite continued fraction equal to x, and then recognizing
that the portion under the first fraction bar is the exact same infinite continued fraction.
Thus,

x = 1 +
1

1 + 1
1+ 1

1+...

= 1 +
1

x

x = 1 +
1

x
x2 = x+ 1

x2 − x− 1 = 0

When we solve the quadratic equation for this and discard the negative solution, we arrive
at the golden ratio.

Another interesting continued fraction is the (periodic!) continued fraction expansion for
e:

e = 1 +
1

0 + 1
1+ 1

1+ 1

2+ 1

1+ 1

1+ 1
4...

= [1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, ...]

A short, but difficult, proof can be found at [1]
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