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1. Introduction

In this paper, we give a proof of Legendre’s three-square theorem and a few consequences
of it.

Theorem 1.1 (Legendre). A natural number n can be represented as a sum of three squares

n = x2 + y2 + z2

if and only if n is not of the form 4a(8b+ 7).

We will assume that n is square free, since we can always factor out a square factor from
each of x, y, and z. Hence, it suffices to show that for any square free n, n = x2 + y2 + z2 if
and only if n 6≡ 7 (mod 8). It’s easy to show the only if direction. The only residues modulo
8 of x2 are 0, 1, 4. Since there’s no way to make 7 out of 0, 1, 4, x2 + y2 + z2 6≡ 7 (mod 8),
proving the ”only if” direction.

Thus, it suffices to show that for any n ≡ 1, 2, 3, 5, 6 (mod 8), n can be represented as a
sum of three squares.

2. Preliminaries

We will assume the following theorems in the rest of the proof.

Theorem 2.1 (Dirichlet’s theorem on primes in arithmetic progression). For any relatively
prime integers a and p, the infinite arithmetic sequence {a+ np : n ∈ N} contains infinitely
many primes.

Theorem 2.2 (Fermat’s Two-Square Theorem). A positive integer n can be represented as
a sum of two squares if and only if every odd prime p in its factorization that has odd power
is congruent to 1 (mod 4).

Theorem 2.3 (Minkowski’s Convex Body Theorem). Let Ω ⊂ RN be a convex body with
volume 2N . Then Ω contains a nonzero lattice point.

In particular, we will use the case of when N = 3, which is the statement that every convex
body in three dimensions with volume greater than 8 contains a nonzero lattice point.
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3. Proof, n ≡ 3 (mod 8)

Given an n ≡ 3 (mod 8), we will construct a solution to x2 + y2 + z2 = n, albeit in a
rather unmotivated fashion. The first step in doing this is to find a prime q such that −m
is a quadratic residue modulo q, as from this we’ll be able to obtain a set of equations that
is easier to work with.
It is clear that if m contains a square factor, then it can be simply be factored out of every
term, so assume that m is square free. Let m = p1p2 . . . pr where the pi’s are prime. We
claim that we can construct a q such that q ≡ 1 (mod 4) and that −2q is a quadratic residue
modulo each of p1, p2, . . ., pr; that is, (−2q

pi
) = 1 for 1 ≤ i ≤ r where (a

b
) denotes the Jacobi

symbol. Note that (−2q
pi

) = 1 implies that there exists an x such that x2 ≡ −2q (mod pi),

and since −2 is relatively prime to pi, we can write q ≡ x2

−2 (mod pi), where the right hand
side is really just one equivalence class modulo pi. Doing this for every prime pi, we obtain
a series of congruences with pairwise relatively prime mods, so by CRT we can construct
a single congruence from these congruences. By Dirichlet’s theorem, there exists a prime
satisfying the latter congrunce. This is our desired q.

Multiplying the equations involving the Jacobi symbols yields

1 =
r∏

i=1

(
−2q

pi

)
.

Using properties of the Jacobi symbol, we have
r∏

i=1

(
−2q

pi

)
=

r∏
i=1

(
−2

pi

)(
q

pi

)
By definition of the Jacobi symbol, we can combine the denominators of

(
−2
pi

)
to get

r∏
i=1

(
−2

pi

)(
q

pi

)
=

(
−2

m

) r∏
i=1

(
q

pi

)
Since q ≡ 1 (mod 4), ( q

pi
) = (pi

q
), so(
−2

m

) r∏
i=1

(
q

pi

)
=

(
−2

m

) r∏
i=1

(
pi
q

)
Now the product just simplifies to (m

q
), so we have(

−2

m

) r∏
i=1

(
pi
q

)
=

(
−2

m

)(
m

q

)
Finally, it is easy to check that for m ≡ 3 (mod 8), (−2

m
) = 1 and for q ≡ 1 (mod 4),

(−1
q

) = 1, so we have (
−2

m

)(
m

q

)
=

(
−m
q

)
Putting this all together, we get (−m

q
) = 1.

Thus, −m is a quadratic residue modulo q, so there exists an odd b such that b2 ≡ −m
(mod q). Equivalently, b2 +m = qh′. Rearranging gives b2− qh′ = −m. Now note that since
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b is odd, b2 ≡ 1 (mod 4). Since −m ≡ −3 ≡ 1 (mod 4) and q ≡ 1 (mod 4), it follows that
4|h′, so h′ = 4h for some integer h, and thus

b2 − 4qh = −m

By our construction of q, we can find an integer t such that t2 ≡ − 1
2q

(mod m).

The next few steps are a bit hairy and the verifications will be swept under the rug. Let

R = 2tqx+ tby +mz

S = (2q)1/2x+
b

(2q)1/2
y

T =
m1/2

(2q)1/2
y

and consider the figure R2 + S2 + T 2 < 2m. In the space of (R, S, T ), this defines a convex,

symmetric body of volume 4
3
π(2m)

3
2 ... worried about plagiarism now, since I’m not certain

about this and the next couple of sentences...

Thus, by Minkowski’s theorem on convex symmetric bodies in 3 dimensions, there exists a
nonzero point (R1, S1, T1) satisfying R2 +S2 +T 2 < 2m. Let x1, y1, z1 be the corresponding
x, y, z. By definition of R, S, and T , we have

R2
1 + S2

1 + T 2
1 = (2tqx1 + tby1 +mz1)

2 +

(
(2q)1/2x1 +

b

(2q)1/2
y1

)2

+

(
m1/2

(2q)1/2
y

)2

= t2(2qx1 + by1)
2 +

1

2q
(2qx1 + by1)

2

= 0 (mod m)

where the last equality comes from the definition of t. If we expand only S2
1 and T 2

1 , we
obtain

R2
1 + S2

1 + T 2
1 = R2

1 +

(
(2q)1/2x1 +

b

(2q)1/2
y1

)2

+

(
m1/2

(2q)1/2
y1

)2

= R2
1 + 2qx21 + 2bx1y1 +

b2

2q
y21 +

m

2q
y21

= R2
1 + 2(qx21 + bx1y1 + hy21)

= R2
1 + 2v

where h = b2+m
4q

and v = qx21 + bx1y1 + hy21. Hence, m|R2
1 + 2v. But R2

1 + 2v 6= 0 because of

the definitions of R, S, T . Also, R2 +S2 +T 2 < 2m, so R2
1 +2v = m. Thus, as the definition

of R1 implies that R1 is an integer, it remains to show that 2v can be written as a sum of 2
squares, which is our last step.

In order to show that 2v is representable as a sum of two squares, we only need to show
that any odd prime p whose exponent is odd in the factorization of v is congruent to 1
(mod 4), so consider such a p with exponent k in the prime factorization of v.

If p - m, then because R2
1 + 2v = m and p|v,

(
m
p

)
= 1.

By definition of v, we know that 4qv = 4q2x21+4qbx1y1+4qhy1, or 4qv = (2qx1+by1)
2+my21.
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Now recall that b2 − 4qh = −m. Hence,
(
−m
p

)
= 1.

Now, if p - q, then we have pk divides an expression of the form e2 +mf 2, so
(
−m
p

)
= 1 here

too. In both cases,
(
−m
p

)
= 1. Combining this with the fact that

(
m
p

)
= 1, we know that(

−1
p

)
= 1, which by quadratic reciprocity means that p ≡ 1 (mod 4).

Now suppose that p|v and p|m. Dividing 4qv = (2qx1 + by1)
2 + my21 by 2q gives 2v =

1
2q

((2qx1 + by1)
2 +my21). Plugging this into R2

1 + 2v = m gives

R2
1 +

1

2q
((2qx1 + by1)

2 +my21) = m.

But since p|v and p|m, this means that p|R1 and p|(2qx1 + by1), so dividing both sides by p
and taking modulo p gives

1

2q

m

p
y21 ≡

m

p
(mod p),

or

y21 ≡ 2q (mod p).

This implies that 2q is a quadratic residue modulo p, so
(

2q
p

)
= 1. But recall that we defined

q to be a positive prime that satisfied
(
−2q
p

)
= 1 for all p in the prime factorization of m.

Hence, once again,
(
−1
p

)
= 1, or that p ≡ 1 (mod 4).

Thus, any prime that divides v to an odd power satisfies p ≡ 1 (mod 4), so 2v is a sum of
two squares.

4. Proof, m ≡ 1, 2, 5, 6 (mod 8)

The proofs for when p ≡ 1, 2, 5, 6 (mod 8) are nearly identical, with the following modifi-
cations.
Instead of

(
−2q
pi

)
= +1, we instead have

(
−q
pi

)
= +1. q ≡ 1 (mod 4) still. Now, if m is even,

let m = 2m1, so that m1 is odd (since we’re assuming m to be squarefree). Then we can find
an odd integer t such that t2 ≡ −1

q
(mod pi), resulting in b2 − qh = −m. Finally, we alter

the definitions of R, S, and T as follows:

R = tqx+ tby +mz

S = q1/2x+
b

q1/2
y

T =
m1/2

q1/2y

Then the proof for these congruence classes proceeds exactly the same as for m ≡ 3 (mod 8).
Thus, we have finished the proof.

5. Some Applications of the Three Square Theorem

Theorem 5.1. An number n can be written as a sum of 3 triangular numbers.
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Proof. By the three-square theorem, there exists a solution to 8n + 3 = x2 + y2 + z2. The
only possible residues of a square modulo 8 are 0, 1, and 4. Thus, x2 ≡ y2 ≡ z2 ≡ 1
(mod 8), so they are all odd. Writing x = 2a + 1, y = 2b + 1, and z = 2c + 1, we obtain

8n + 3 = 4(a2 + a) + 4(b2 + b) + 4(c2 + c) + 3, or n = a(a+1)
2

+ b(b+1)
2

+ c(c+1)
2

. Thus, any
number n can be written as a sum of 3 triangular numbers. �

Theorem 5.2. Every natural number can be written as a sum of two squares and a triangular
number.

Proof. By the Three-Square Theorem, every number congruent to 1 (mod 8) can be written
as a sum of three squares, so for any integer n, 8n+1 = x2+y2+z2 for some x, y, z. Now recall
that 0, 1, 4 are the only quadratic residues modulo 8. Thus, at most one of x, y, z can be odd.
WLOG, let z = 2c+ 1, and let y = 2b, x = 2a. Then we have 8n+ 1 = 4(a2 + b2) + (2c+ 1)2.
Rearranging, and taking (mod 8), we have 4(a2 + b2) = 8n+ 1− (2c+ 1)2 ≡ 0 (mod 8), as
(2c + 1)2 ≡ z2 ≡ 1 (mod 8). Hence, a2 + b2 ≡ 0 (mod 2). Therefore, a ≡ b (mod 2), so we
can write �

Theorem 5.3. We have the following characterization of the x2 + y2 + 2z2:

{x2 + y2 + 2z2 : x, y, z ∈ Z} = N\{4a(16b+ 14) : a, b ∈ N}

Proof. First, suppose that n = x2 + y2 + 2z2. Then, after multiplying both sides by 2 and
rearranging, we get 2n = 2x2 +2y2 +4z2 = (x+y)2 +(x−y)2 +(2z)2. This process is clearly
reversible, so if x 6∈ {2(x2 + y2 + z2) : x, y, z ∈ Z}, then x 6∈ {x2 + y2 + 2z2 : x, y, z ∈ Z}.
But x 6∈ {2(x2 + y2 + z2) : x, y, z ∈ Z} = {4a(16b+ 14) : a, b ∈ N}, which means that

{x2 + y2 + 2z2 : x, y, z ∈ Z} = N\{4a(16b+ 14) : a, b ∈ N},
as desired. �
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