PROOF OF LAGRANGE'S 3-SQUARE THEOREM AND OTHER RELATED RESULTS

JONATHAN SY

1. INTRODUCTION

In this paper, we give a proof of Legendre's three-square theorem and a few consequences of it.

Theorem 1.1 (Legendre). A natural number n can be represented as a sum of three squares

$$n = x^2 + y^2 + z^2$$

if and only if n is not of the form $4^{a}(8b+7)$.

We will assume that n is square free, since we can always factor out a square factor from each of x, y, and z. Hence, it suffices to show that for any square free n, $n = x^2 + y^2 + z^2$ if and only if $n \not\equiv 7 \pmod{8}$. It's easy to show the only if direction. The only residues modulo 8 of x^2 are 0, 1, 4. Since there's no way to make 7 out of 0, 1, 4, $x^2 + y^2 + z^2 \not\equiv 7 \pmod{8}$, proving the "only if" direction.

Thus, it suffices to show that for any $n \equiv 1, 2, 3, 5, 6 \pmod{8}$, n can be represented as a sum of three squares.

2. Preliminaries

We will assume the following theorems in the rest of the proof.

Theorem 2.1 (Dirichlet's theorem on primes in arithmetic progression). For any relatively prime integers a and p, the infinite arithmetic sequence $\{a + np : n \in \mathbb{N}\}$ contains infinitely many primes.

Theorem 2.2 (Fermat's Two-Square Theorem). A positive integer n can be represented as a sum of two squares if and only if every odd prime p in its factorization that has odd power is congruent to 1 (mod 4).

Theorem 2.3 (Minkowski's Convex Body Theorem). Let $\Omega \subset \mathbb{R}^N$ be a convex body with volume 2^N . Then Ω contains a nonzero lattice point.

In particular, we will use the case of when N = 3, which is the statement that every convex body in three dimensions with volume greater than 8 contains a nonzero lattice point.

Date: December 10, 2018.

JONATHAN SY

3. PROOF, $n \equiv 3 \pmod{8}$

Given an $n \equiv 3 \pmod{8}$, we will construct a solution to $x^2 + y^2 + z^2 = n$, albeit in a rather unmotivated fashion. The first step in doing this is to find a prime q such that -m is a quadratic residue modulo q, as from this we'll be able to obtain a set of equations that is easier to work with.

It is clear that if m contains a square factor, then it can be simply be factored out of every term, so assume that m is square free. Let $m = p_1 p_2 \dots p_r$ where the p_i 's are prime. We claim that we can construct a q such that $q \equiv 1 \pmod{4}$ and that -2q is a quadratic residue modulo each of p_1, p_2, \dots, p_r ; that is, $\left(\frac{-2q}{p_i}\right) = 1$ for $1 \leq i \leq r$ where $\left(\frac{a}{b}\right)$ denotes the Jacobi symbol. Note that $\left(\frac{-2q}{p_i}\right) = 1$ implies that there exists an x such that $x^2 \equiv -2q \pmod{p_i}$, and since -2 is relatively prime to p_i , we can write $q \equiv \frac{x^2}{-2} \pmod{p_i}$, where the right hand side is really just one equivalence class modulo p_i . Doing this for every prime p_i , we obtain a series of congruences with pairwise relatively prime mods, so by CRT we can construct a single congruence from these congruences. By Dirichlet's theorem, there exists a prime satisfying the latter congrunce. This is our desired q.

Multiplying the equations involving the Jacobi symbols yields

$$1 = \prod_{i=1}^{r} \left(\frac{-2q}{p_i}\right)$$

Using properties of the Jacobi symbol, we have

$$\prod_{i=1}^{r} \left(\frac{-2q}{p_i}\right) = \prod_{i=1}^{r} \left(\frac{-2}{p_i}\right) \left(\frac{q}{p_i}\right)$$

By definition of the Jacobi symbol, we can combine the denominators of $\left(\frac{-2}{p_i}\right)$ to get

$$\prod_{i=1}^{r} \left(\frac{-2}{p_i}\right) \left(\frac{q}{p_i}\right) = \left(\frac{-2}{m}\right) \prod_{i=1}^{r} \left(\frac{q}{p_i}\right)$$

Since $q \equiv 1 \pmod{4}$, $\left(\frac{q}{p_i}\right) = \left(\frac{p_i}{q}\right)$, so

$$\left(\frac{-2}{m}\right)\prod_{i=1}^{r}\left(\frac{q}{p_{i}}\right) = \left(\frac{-2}{m}\right)\prod_{i=1}^{r}\left(\frac{p_{i}}{q}\right)$$

Now the product just simplifies to $(\frac{m}{q})$, so we have

$$\left(\frac{-2}{m}\right)\prod_{i=1}^{r} \left(\frac{p_i}{q}\right) = \left(\frac{-2}{m}\right) \left(\frac{m}{q}\right)$$

Finally, it is easy to check that for $m \equiv 3 \pmod{8}$, $\left(\frac{-2}{m}\right) = 1$ and for $q \equiv 1 \pmod{4}$, $\left(\frac{-1}{a}\right) = 1$, so we have

$$\left(\frac{-2}{m}\right)\left(\frac{m}{q}\right) = \left(\frac{-m}{q}\right)$$

Putting this all together, we get $\left(\frac{-m}{q}\right) = 1$.

Thus, -m is a quadratic residue modulo q, so there exists an odd b such that $b^2 \equiv -m \pmod{q}$. (mod q). Equivalently, $b^2 + m = qh'$. Rearranging gives $b^2 - qh' = -m$. Now note that since *b* is odd, $b^2 \equiv 1 \pmod{4}$. Since $-m \equiv -3 \equiv 1 \pmod{4}$ and $q \equiv 1 \pmod{4}$, it follows that 4|h', so h' = 4h for some integer *h*, and thus

$$b^2 - 4qh = -m$$

By our construction of q, we can find an integer t such that $t^2 \equiv -\frac{1}{2q} \pmod{m}$. The next few steps are a bit hairy and the verifications will be swept under the rug. Let

$$R = 2tqx + tby + mz$$
$$S = (2q)^{1/2}x + \frac{b}{(2q)^{1/2}}y$$
$$T = \frac{m^{1/2}}{(2q)^{1/2}}y$$

and consider the figure $R^2 + S^2 + T^2 < 2m$. In the space of (R, S, T), this defines a convex, symmetric body of volume $\frac{4}{3}\pi(2m)^{\frac{3}{2}}$... worried about plagiarism now, since I'm not certain about this and the next couple of sentences...

Thus, by Minkowski's theorem on convex symmetric bodies in 3 dimensions, there exists a nonzero point (R_1, S_1, T_1) satisfying $R^2 + S^2 + T^2 < 2m$. Let x_1, y_1, z_1 be the corresponding x, y, z. By definition of R, S, and T, we have

$$R_1^2 + S_1^2 + T_1^2 = (2tqx_1 + tby_1 + mz_1)^2 + \left((2q)^{1/2}x_1 + \frac{b}{(2q)^{1/2}}y_1\right)^2 + \left(\frac{m^{1/2}}{(2q)^{1/2}}y\right)^2$$
$$= t^2(2qx_1 + by_1)^2 + \frac{1}{2q}(2qx_1 + by_1)^2$$
$$= 0 \pmod{m}$$

where the last equality comes from the definition of t. If we expand only S_1^2 and T_1^2 , we obtain

$$\begin{aligned} R_1^2 + S_1^2 + T_1^2 &= R_1^2 + \left((2q)^{1/2} x_1 + \frac{b}{(2q)^{1/2}} y_1 \right)^2 + \left(\frac{m^{1/2}}{(2q)^{1/2}} y_1 \right)^2 \\ &= R_1^2 + 2q x_1^2 + 2b x_1 y_1 + \frac{b^2}{2q} y_1^2 + \frac{m}{2q} y_1^2 \\ &= R_1^2 + 2(q x_1^2 + b x_1 y_1 + h y_1^2) \\ &= R_1^2 + 2v \end{aligned}$$

where $h = \frac{b^2+m}{4q}$ and $v = qx_1^2 + bx_1y_1 + hy_1^2$. Hence, $m|R_1^2 + 2v$. But $R_1^2 + 2v \neq 0$ because of the definitions of R, S, T. Also, $R^2 + S^2 + T^2 < 2m$, so $R_1^2 + 2v = m$. Thus, as the definition of R_1 implies that R_1 is an integer, it remains to show that 2v can be written as a sum of 2 squares, which is our last step.

In order to show that 2v is representable as a sum of two squares, we only need to show that any odd prime p whose exponent is odd in the factorization of v is congruent to 1 (mod 4), so consider such a p with exponent k in the prime factorization of v.

If
$$p \nmid m$$
, then because $R_1^2 + 2v = m$ and $p \mid v$, $\left(\frac{m}{p}\right) = 1$.
By definition of v , we know that $4qv = 4q^2x_1^2 + 4qbx_1y_1 + 4qhy_1$, or $4qv = (2qx_1 + by_1)^2 + my_1^2$.

Now recall that $b^2 - 4qh = -m$. Hence, $\left(\frac{-m}{p}\right) = 1$. Now, if $p \nmid q$, then we have p^k divides an expression of the form $e^2 + mf^2$, so $\left(\frac{-m}{p}\right) = 1$ here too. In both cases, $\left(\frac{-m}{p}\right) = 1$. Combining this with the fact that $\left(\frac{m}{p}\right) = 1$, we know that $\left(\frac{-1}{p}\right) = 1$, which by quadratic reciprocity means that $p \equiv 1 \pmod{4}$.

Now suppose that p|v and p|m. Dividing $4qv = (2qx_1 + by_1)^2 + my_1^2$ by 2q gives $2v = \frac{1}{2q}((2qx_1 + by_1)^2 + my_1^2)$. Plugging this into $R_1^2 + 2v = m$ gives

$$R_1^2 + \frac{1}{2q}((2qx_1 + by_1)^2 + my_1^2) = m.$$

But since p|v and p|m, this means that $p|R_1$ and $p|(2qx_1 + by_1)$, so dividing both sides by p and taking modulo p gives

$$\frac{1}{2q}\frac{m}{p}y_1^2 \equiv \frac{m}{p} \pmod{p},$$

or

 $y_1^2 \equiv 2q \pmod{p}.$

This implies that 2q is a quadratic residue modulo p, so $\left(\frac{2q}{p}\right) = 1$. But recall that we defined q to be a positive prime that satisfied $\left(\frac{-2q}{p}\right) = 1$ for all p in the prime factorization of m. Hence, once again, $\left(\frac{-1}{p}\right) = 1$, or that $p \equiv 1 \pmod{4}$.

Thus, any prime that divides v to an odd power satisfies $p \equiv 1 \pmod{4}$, so 2v is a sum of two squares.

4. PROOF, $m \equiv 1, 2, 5, 6 \pmod{8}$

The proofs for when $p \equiv 1, 2, 5, 6 \pmod{8}$ are nearly identical, with the following modifications. Instead of $\binom{-2q}{2} = +1$ we instead have $\binom{-q}{2} = +1$ $q \equiv 1 \pmod{4}$ still. Now if m is even

Instead of $\left(\frac{-2q}{p_i}\right) = +1$, we instead have $\left(\frac{-q}{p_i}\right) = +1$. $q \equiv 1 \pmod{4}$ still. Now, if m is even, let $m = 2m_1$, so that m_1 is odd (since we're assuming m to be squarefree). Then we can find an odd integer t such that $t^2 \equiv \frac{-1}{q} \pmod{p_i}$, resulting in $b^2 - qh = -m$. Finally, we alter the definitions of R, S, and T as follows:

$$R = tqx + tby + mz$$
$$S = q^{1/2}x + \frac{b}{q^{1/2}}y$$
$$T = \frac{m^{1/2}}{q^{1/2}y}$$

Then the proof for these congruence classes proceeds exactly the same as for $m \equiv 3 \pmod{8}$. Thus, we have finished the proof.

5. Some Applications of the Three Square Theorem

Theorem 5.1. An number n can be written as a sum of 3 triangular numbers.

Proof. By the three-square theorem, there exists a solution to $8n + 3 = x^2 + y^2 + z^2$. The only possible residues of a square modulo 8 are 0, 1, and 4. Thus, $x^2 \equiv y^2 \equiv z^2 \equiv 1 \pmod{8}$, so they are all odd. Writing x = 2a + 1, y = 2b + 1, and z = 2c + 1, we obtain $8n + 3 = 4(a^2 + a) + 4(b^2 + b) + 4(c^2 + c) + 3$, or $n = \frac{a(a+1)}{2} + \frac{b(b+1)}{2} + \frac{c(c+1)}{2}$. Thus, any number n can be written as a sum of 3 triangular numbers.

Theorem 5.2. Every natural number can be written as a sum of two squares and a triangular number.

Proof. By the Three-Square Theorem, every number congruent to 1 (mod 8) can be written as a sum of three squares, so for any integer n, $8n+1 = x^2+y^2+z^2$ for some x, y, z. Now recall that 0, 1, 4 are the only quadratic residues modulo 8. Thus, at most one of x, y, z can be odd. WLOG, let z = 2c+1, and let y = 2b, x = 2a. Then we have $8n+1 = 4(a^2+b^2) + (2c+1)^2$. Rearranging, and taking (mod 8), we have $4(a^2+b^2) = 8n+1 - (2c+1)^2 \equiv 0 \pmod{8}$, as $(2c+1)^2 \equiv z^2 \equiv 1 \pmod{8}$. Hence, $a^2+b^2 \equiv 0 \pmod{2}$. Therefore, $a \equiv b \pmod{2}$, so we can write

Theorem 5.3. We have the following characterization of the $x^2 + y^2 + 2z^2$:

$$\{x^2 + y^2 + 2z^2 : x, y, z \in \mathbb{Z}\} = \mathbb{N} \setminus \{4^a(16b + 14) : a, b \in \mathbb{N}\}\$$

Proof. First, suppose that $n = x^2 + y^2 + 2z^2$. Then, after multiplying both sides by 2 and rearranging, we get $2n = 2x^2 + 2y^2 + 4z^2 = (x+y)^2 + (x-y)^2 + (2z)^2$. This process is clearly reversible, so if $x \notin \{2(x^2+y^2+z^2): x, y, z \in \mathbb{Z}\}$, then $x \notin \{x^2+y^2+2z^2: x, y, z \in \mathbb{Z}\}$. But $x \notin \{2(x^2+y^2+z^2): x, y, z \in \mathbb{Z}\} = \{4^a(16b+14): a, b \in \mathbb{N}\}$, which means that

$$\{x^2 + y^2 + 2z^2 : x, y, z \in \mathbb{Z}\} = \mathbb{N} \setminus \{4^a(16b + 14) : a, b \in \mathbb{N}\},\$$

as desired.

References

Euler Circle, Palo Alto, CA 94306

^[1] N. C. Ankeny. Sums of Three Squares. Proc. Amer. Math. Soc. 008:316-319, 1957

^[2] Zhi-Wei Sun. The Three-Square Theorem And Its Applications.