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1. Introduction

The Stern-Brocot tree is a way of organizing the positive rational numbers. It turns out
to enumerate every single positive rational exactly once, and it is also a binary search tree.
The goal of this paper is to provide an elementary understanding and background of the
Stern-Brocot tree while summarizing and proving the main results. The root of the tree
starts at 1, and the parent-child relationship is described in Sections 2 and 3. A summary
of the major properties is done in Section 4.

The tree was discovered by Moritz Stern and Achille Brocot in the 19th century. They
worked independently of each other. Brocot first used the tree to design gears with a ratio
of smooth numbers close to some real number.

2. Continued Fractions

Before discussing the Stern-Brocot tree, we have to first define what continued fractions
are.

Definition 2.1. The continued fraction form of a positive rational number q is:

q = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

ak

a0, a1, a2, · · · are called the terms or the coefficients of the continued fraction, where a0 is
a non-negative integer and a1, · · · , ak are positive integers. In order to make these repre-
sentations unique, we have the restriction that ak ≥ 2. We write the continued fraction as
q = [a0; a1, a2, . . . , ak].

In the Stern-Brocot tree, we define the parent of some rational q = [a0; a1, a2, . . . , ak] as
[a0; a1, a2, . . . , ak−1+1] if ak = 2 and [a0; a1, a2, . . . , ak−1] otherwise. Conversely, the children
of some q = [a0; a1, a2, . . . , ak] are [a0; a1, a2, . . . , ak + 1] and [a0; a1, a2, . . . , ak − 1, 2]. The
smaller of the two children is the left child, and the larger of the two is the right child.

Example. Starting from the root of the tree, [1; ] has children 1
2

= [0; 2] and 2
1

= [2; ].

Continuing, the children of those respectively are 1
3

= [0; 3], 2
3

= [0; 1, 2] and 3
2

= [1; 2], 3
1

=
[3; ].
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3. Mediants

Definition 3.1. The mediant of two rational numbers in lowest terms a
c
, b
d

is

a + b

c + d
.

We can also define the Stern-Brocot tree using mediants. We define the left child of some
rational q as the mediant of q and its closest ancestor smaller than q. If there is no such
ancestor, then use 0

1
as the ancestor. Similarly, we define the right child of some rational

q as the mediant of q and its closest ancestor larger than q. If there is no such ancestor,
then use 1

0
(which we think as infinity here) as the ancestor. We start with the root 1

1
and

proceed down the tree.The two definitions of the Stern-Brocot tree are in fact equivalent.

Example. The children of 1
1

are respectively 1+0
1+1

= 1
2
, 1+1
1+0

= 2
1
. Their children are 1+0

2+1
=

1
3
, 1+1
2+1

= 2
3

and 2+1
1+1

= 3
2
, 2+1
1+0

= 3
1
.

Mediants have the nice property that they are always in between its two ancestors.

Theorem 3.2. If a
c
< b

d
, then a

c
< a+b

c+d
< b

d
.

Proof. a
c
< a+b

c+d
follows from the fact that

a + b

c + d
− a

c
=

bc− ad

c(c + d)
=

d

c + d
(
b

d
− a

c
) > 0

. Similarly, a+c
b+d

< b
d

follows from the fact that

b

d
− a + b

c + d
=

bc− ad

d(c + d)
=

c

c + d
(
b

d
− a

c
) > 0

�

Furthermore, mediants also surprsingly have a fairly small denominator.

Theorem 3.3. If a
c
, b
d

satisfy bc − ad = 1, then the mediant is the fraction with smallest

denominator in the interval (a
c
, b
d
).

Proof. Take some fraction x
y

that is in the interval (a
c
, b
d
). Since bc−ad = 1, then there exists

integers k1, k2 such that x = k1a+ k2b and y = k1c+ k2d. If we can prove that k1 and k2 are
positive, we would be done. This is because it would imply that

y = k1c + k2d ≥ c + d.

To see why k1 must be positive,

b

d
− k1a + k2b

k1c + k2d
= k1

bc− ad

d(k1c + k2d)

must be positive, which implies that k1 is also positive. Similarly for k2,

k1a + k2b

k1c + k2d
− a

c
= k2

bc− ad

c(k1c + k2d)

must be positive, which implies that k2 is also positive. �
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4. Properties of the Stern-Brocot tree
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2
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3
1

5
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The Stern-Brocot tree has a number of intersting properties relating to the rationals, the
first of which is the following:

Theorem 4.1. The Stern-Brocot tree contains every positive rational number in lowest terms
exactly once.

Just from the properties of the mediants, we already know that a fraction cannot appear
twice in the tree because the construction of the tree using mediants preserves the order of
the rationals. To prove the rest of the theorem, we need a couple of lemmas.

Lemma 4.2. If a
c
< b

d
and one of the fractions is a parent of the other, then bc− ad = 1.

Proof. Proceed by induction on the distance from the root. The first pairs of fractions 0
1
, 1
1

and 1
1
, 1
0

work. Assume it holds for some fractions a
c
< b

d
. Then their mediant a+b

c+d
also

satisfies it for both fractions by some simple algebraic manipulations.

c(a + b) − a(c + d) = ca + bc− ac− ad = bc− ad = 1

and

b(c + d) − d(a + b) = bc + bd− da− db = bc− ad = 1.

�

Proof of Theorem 4.1. Take some positive rational x
y
. We need to show that it will appear

on the tree. We can find some rationals a
c
, b
d

that are on the tree and satisfy the above lemma

such that a
c
< x

y
< b

d
. Sepearating the inequalities,

xc− ya > 0 and by − dx > 0.

Since the variables are all integers, the above is equivalent to

xc− ya ≥ 1 and by − dx ≥ 1.

Multiplying,

(b + d)(xc− ya) ≥ (b + d) and (a + c)(by − dx) ≥ (a + c).

Adding the inequalities,

(b + d)(xc− ya) + (a + c)(by − dx) ≥ a + b + c + d.

bcx− ady − aby + cdx + aby − cdx + bcy − adx ≥ a + b + c + d

(x + y)(bc− ad) ≥ a + b + c + d
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Applying our lemma,
x + y ≥ a + b + c + d

which means that most after x+ y levels of computing mediants, we will reach x
y
, otherwise,

the denominators would get too large. �

Definition 4.3. A binary search tree is a tree that has a designated root node, where each
node stores a value and has a left sub-tree and a right sub-tree. Furthermore, each value in
a node must be greater than or equal to any value in the left sub-tree, and less than or equal
to any value in the right sub-tree. This allows for a binary search algorithm to be able to
correctly traverse the tree.

From Theorem 3.2 and our method of construction, the following becomes clear.

Proposition 4.4. The Stern-Brocot tree is an infinite binary search tree with respect to the
usual ordering of rationals.

As a result of this, we can find the path from the root to some rational q by using binary
search.

The algorithm is as follows: Let L = 0
1

and H = 1
0
. Until q is either L or H, repeat the

following. Compute the mediant M of L and H. If M < q, then let L = M . Otherwise, let
H = M .

The values of M are exactly the path from the root to q. We can also approximate decimals
with rationals by using this binary search algorithm to arbitrary precision by stopping the
search when we have reached a desired precision. By Theorem 3.3, these are the best
rational approximation in the sense that their denominators are smallest possible. These
approximations are also given by truncating a continued fraction of some real number.
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