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1. Introduction

In class, we discussed the class group of quadratic forms of discriminant d, that is, the
abelian group of all classes of quadratic forms of the given discrimanant (with order equal to
its class number). There is a separate way to describe these groups in an algebraic fashion as
being derived from ideals of the integer ring of number fields. This allows further examination
of class groups from an algebraic perspective, and also allows extensions into other types of
number fields (for instance, the class group of biquadratic fields can be derived from those
of its quadratic subfields [Sim95]). In this paper, we establish the ideal class group, examine
its relationship with the quadratic form class group, and prove that the group is finite.

2. Basic Definitions

To discuss ideal class groups, we must first define ideals.

Definition 2.1. An ideal I of a ring R is an additive subgroup of the ring in which for all
i ∈ I and r ∈ R, ri ∈ I.

There are also specific types of ideals that interest us.

Definition 2.2. A prime ideal is an ideal I 6= R such that ∀a, b ∈ R and ab ∈ I, either

a ∈ I or b ∈ I.

As the name and definition suggest, prime ideals share a lot of properties with prime
numbers. In fact, the prime ideals of the ring Z are exactly the ideals consisting of all
multiples of some prime p plus the 0 ideal.

Definition 2.3. A principal ideal is an ideal which can be expressed as aR for some a ∈ R

Definition 2.4. An ideal I of a ring R is maximal if there are no ideals properly contained
in R which properly contain I.

Definition 2.5. Given a ring R, an R-module is an abelian group M combined with a
multiplication action by R: R ×M → M which satisfies the distributive and associative
property, with the identity element of R also acting as the identity element within this
action.
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3. The Ring of Integers

In addition, we also need to generalize the concept of the ring of integers Z to all fields
which are finite-degree extensions of Q, which we call number fields.

Definition 3.1. An algebraic integer over a number field K is an element of K which is a
root of some monic polynomial with integer coefficients.

The algebraic integers of Q are exactly the integers Z, and the algebraic integers serve as
the generalization for Z over all number fields.

To prove that the algebraic integers form a ring, we first prove the following:

Theorem 3.2. The group Z[a] is finitely generated iff a is an algebraic integer.

Proof. If a is algebraic, then we have some monic polynomial f of degree m with inte-
ger coefficients such that f(a) = 0. This means that all an can be generated by the set
1, a, a2, a3, ..., am−1, as it can be written as aman−m and simplified using the monic polyno-
mial; this can be repeated until a polynomial of degree less than m is left. This makes that
set a finite set of generators for Z[a].

If Z[a] is finitely generated by a set a1, a2, a3, . . . , am, then for each generator, find a
function fi such that fi(a) = ai. Then, pick some N larger than the highest degree of the fis.
aN can be written as some linear combination of the generators k1a1+k2a2+k3a3+. . .+kmam.
Thus, we have xN − (k1f1(x) + k2f2(x) + k3f3(x) + . . . + kmfm(x)) = 0, which is a monic
degree-N polynomial with integer coefficients for which a is a solution. �

From this, we can now show that the set of all algebraic integers forms a ring O.

Theorem 3.3. The set of all algebraic integers of a number field K forms a ring.

Proof. If α and β are algebraic integers, then Z[α] and Z[β] are finitely generated, and Z[α, β]
is also finitely generated. Since Z[α, β] is a ring, Z[α + β] and Z[αβ] are subrings of Z[α, β]
and are thus also finitely generated, meaning that α+ β and αβ are also algebraic integers.
Thus, the set OK of all algebraic integers of a number field K is a ring which we call the
ring of integers of K. �

Before we continue, we establish the concept of the norm of elements of K and ideals of
O.

Definition 3.4. The norm of an element a of K is the product of the images of a in each
of the embeddings from K to C.

Definition 3.5. The norm of an ideal I of O is defined as the order of O/I.

4. Fractional Ideals

Now that we have established that the algebraic integers form a ring, we can use this ring
to create a group structure on generalized versions of its ideals—this group has the ideal
class group as a quotient group.

This group structure is defined through the fractional ideal, which is defined as follows:

Definition 4.1. A nonzero O-submodule I of K is a fractional ideal of O if ∃a ∈ O, a 6= 0
such that aI is an ideal of O.
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To prove that the fractional ideals do indeed form a group, we must show that each
fractional ideal has an inverse. We first do this solely for the prime (integral) ideals:

Given a prime ideal p, define p−1 as the set of all x ∈ K such that xp ⊂ O.

Theorem 4.2. p−1 is a fractional ideal.

Proof. Take some nonzero a ∈ p. Then, by the definition above, ap−1 ⊂ O, and furthermore
is an (integral) ideal of O, so p−1 is a fractional ideal. �

Given that it is a fractional ideal, we must now prove that it is indeed an inverse of p
(meaning that p−1p = O). Before we can do this, we need an identity element. In this case,
that element is the ring itself, O. Because fractional ideals are O-modules, IO = I for all
fractional ideals I. Next, we also need the following theorems and lemmas, which will not
be proven here.

Theorem 4.3. All prime ideals of O are maximal.

Lemma 4.4. Every nonzero ideal I of O contains a product of prime ideals. [Lap06]

Now, we can prove that p−1 is a correctly defined inverse, starting with the following
lemma:

Lemma 4.5. O ( p−1.

Proof. By their definitions, all elements of O must be in p−1; we therefore must find some
element of p−1 that is not in O. To do this, we take some nonzero a ∈ p, and find a product
of prime ideals p1p2p3 · · · pk ⊂ aO with minimal k. We know that aO ⊂ p; therefore, by
the definition of prime ideals and because all prime ideals are maximal, p = pi for some i.
Because k is minimal, the product of the remaining prime ideals is not contained in aO. This
means we can find some element b that is not in aO but is contained in the product of the
remaining prime ideals, meaning that bp ⊂ aO. This means that ba−1p ⊂ O, so ba−1 ∈ p−1,
but ba−1 6∈ O. �

Theorem 4.6. p−1p = O.

Proof. By the definition of p−1, we have p ⊂ pp−1 ⊂ O. Since p is a prime ideal and thus a
maximal ideal, there can be no ideal properly between p and O, meaning that pp−1 is equal
to one of these ideals.

First, assume pp−1 = p. Then we take a generating set β1, β2, β3, ..., βk of p. Also, from
the previous lemma, there is at least one a ∈ p−1 such that a 6∈ O. We then have that
ap ⊂ p, so for each βi, aβi can be written as a linear combination of betais (with coefficients
in O as follows:

aβi =
k∑
j=1

ci,jβj

for all βi.
Rearranging terms gives us

k∑
j=1

ci,jβj − aβi = 0

.
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Taking these equations for each i gives us a system of k equations in the βis, which can
be expressed as a matrix equation:

c1,1 − a c1,2 ... c1,k
c2,1 c2,2 − a ... c2,k
... ... ...
ck,1 ck,2 ... ck,k − a



β1
β2
...
βk

 = 0

Thus, the matrix on the left must have determinant 0. The determinant here, however,
is a monic polynomial in a with integer coefficients. Thus, a is the zero of some such monic
polynomial, making it an algebraic integer; therefore, a ∈ O. However, we defined a 6∈ O,
giving us a contradiction. Thus,

p−1p 6= p

so

p−1p = O.

�

We can now use this definition of the inverse of a prime ideal to define inverses for all
(integral) ideals.

Theorem 4.7. All integral ideals are invertible in the fractional ideals.

Proof. Assume there is some integral ideal I which is not invertible; furthermore, assume
that it is a largest such ideal and is not strictly contained in any other non-invertible ideal.

We know that I is not prime—and, by extension, not maximal—so I must be contained
in some maximal, prime p. Since O ⊂ p−1, I ⊂ p−1I.

By the same logic as in the proof of the previous theorem, if I = p−1I, then composing aβi
for all generators βi yields that a ∈ O for any a ∈ p−1, a contradiction. Therefore I ( p−1I.
Since I is not strictly contained by any non-invertible ideals, p−1I must be invertible. Call
its inverse J ; we have that Jp−1I = O. Thus, Jp−1 is the inverse of I, and I is in fact
invertible. �

This can now be easily extended to fractional ideals.

Corollary 4.8. Every fractional ideal I is invertible.

Proof. I can be written as J
a
, where J is an integral ideal. We have

aJ−1
J

a
= J−1a

J

a
= J−1J = O

Therefore, aJ−1 is the inverse of I. �

Therefore, all fractional and integral ideals have inverses within the fractional ideals.
Therefore we have proven:

Theorem 4.9. The fractional ideals over a number field K form a group IK under multi-
plication.



IDEAL CLASS GROUPS 5

5. The Ideal Class Group

We can also extend the concept of principal ideals to the fractional ideals, forming a
subgroup of IK .

Definition 5.1. A principal fractional ideal is a fractional ideal which can be expressed as
aR for some a ∈ K. The group of these ideals is denoted P (k) and is a subgroup of IK .

Definition 5.2. The ideal class group Cl(K) of a number field K is defined as the quotient
IK/PK , where PK is the subgroup of principal ideals.

The ideal class group of Q[
√
d] can in fact be isomorphic to the class group based off

of quadratic forms with discriminant d for d negative in certain cases. In particular, when
d is negative and a discriminant for some positive definite quadratic form, then there is a
bijection between the class group of quadratic forms with discriminant d and the ideal class

group of Q[
√
d], created by mapping ax2 + bxy + cy2 to the ideal [a, −b+

√
d

2
]. [Cox11]

6. The Ideal Class Group and Lattices

To show that the ideal class group is finite, we must first establish the following theorem
about lattices, which is an extension of Minkowski’s lemma:

Theorem 6.1. Given a lattice Λ in Rn, if X is a compact and convex set which is symmetric
about 0 with volume greater than or equal to 2n Vol(Rn/Λ), then there is at least one nonzero
point in both Λ and X.

Proof. We will take this proof in two cases, strict inequality and equality.
If Vol(X) > 2n Vol(Rn/Λ), then the map ψ from Rn → Rn/Λ cannot be injective over

X/2; therefore, there must be some x1 and x2 ∈ X/2 such that ψ(x1) = ψ(x2). Since X,
and thus also X/2, is symmetric and convex, x1−x2

2
is also in X/2. Thus, x1 − x2 is in X.

Since x1 − x2 = 0 (mod Rn/Λ), x1 − x2 must also be in Λ, completing the proof.
In the case of equality, we know from the previous case that any set which is symmetric,

compact, and convex and has a larger volume than X does include at least one point in
Λ. Assume that X does not include any lattice points. Starting with the set 2X (which
must have at least one lattice point per the previous case, which we shall call z0). Then,
another symmetric, compact, and convex set can be drawn within 2X which is larger than
X but does not include z0. This set then must include some other point in Λ, which we
call z1. Doing this repeatedly gives us an infinite sequence of distinct lattice points which
all lie inside 2X. However, 2X only contains a finite number of lattice points, leading to a
contradiction. Therefore there must be some point in X which is also in Λ. �

We can now relate the ring of integers to lattices through their embeddings, which allows
us to use the previous result to prove that the ideal class group is finite.

Definition 6.2. The canonical embedding of the ring of integers O of a number field K,
which has mr real embeddings and mc conjugate pairs of complex embeddings, is the em-
bedding into Rn, where n is the degree of the extension K as follows:

σ(a) = (r1(a), r2(a), r3(a), ..., rmr(a), c1(a), c2(a), c3(a), ..., cmc(a))

where r1, r2, ..., rmr are the real embeddings of K and c1, c2, ..., cmc are one of the two
complex embeddings from each conjugate pair. Transposing C to R2 gives us a map to Rn.
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Under this embedding, O(K) goes to a lattice in Rn. We have that Vol(Rn/σ(O(K))) is

equal to the determinant of the generator matrix of σ(O(K)), which in turn is equal to
√
D

2mc ,
where D is the discriminant of the extension K.

7. Proof that the ideal class group is finite

We can now begin the proof.

Theorem 7.1. Cl(K) is a finite group.

Proof. Because all fractional ideals are O-modules, each of them also maps to a lattice in
Rn. Thus, we take a (nonzero) fractional ideal I, and find the lattice σ(I−1). This lattice
has fundamental parallelogram volume

Vol(σ(I−1)/Rn) = Vol(Rn/σ(O(K)))N(I−1)

=
Vol(Rn/σ(O(K)))

N(I)

Now, take some symmetric, convex, compact set X and scale it by

λ = 2 n

√
Vol(Rn/σ(I−1)))

Vol(X)

This gives
Vol(λX) = 2n Vol(Rn/σ(I−1))

which means we can now use our extension of Minkowski’s theorem and find some a in λX
which is also in σ(O(K)). We can then take the ideal aI, which, since a ∈ I−1, is an integral
ideal in the same class as I.

We then have N(aI) = N(I)n(a). Recalling the definition of the norm of an element in
a number field, there must be a maximum element norm within the compact and convex X
- we call that maximum norm M . The maximum norm over λX is likewise λnM Thus, we
have

N(aI) ≤ N(I)λnM

≤ N(I)2n
Vol(Rn/σ(I−1))

Vol(X)

≤ N(I)2n
Vol(Rn/σ(O(K))

Vol(X)N(I)

≤ 2n
Vol(Rn/σ(O(K))

Vol(X)

As the set X was chosen without regards to the ideal I, this last quantity is completely
independent of I and applies to all fractional ideals I of K. Thus, we have shown that given
a fractional ideal I, one can construct an integral ideal of the same class aI with a norm less

than or equal to the finite bound 2nVol(Rn/σ(O(K))
Vol(X)

.

This, in turn, means that every ideal class must have at least one ideal with norm less

than or equal to 2nVol(Rn/σ(O(K))
Vol(X)

. However, since there can only be a finite number of ideals
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with norm less than or equal to any given value (and, of course, each such ideal belongs to
exactly one class), there must be a finite number of ideal classes. �
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