Proofs of the Quadratic Reciprocity Theorems

Antarish Rautela

November 6, 2018

1 Quadratic Reciprocity Law

If the primes p and q are odd, then $\binom{p}{q}\binom{q}{p} = (1)^{\frac{(p-1)(q-1)}{4}}$, or, $(1) = \frac{(p-1)(q-1)}{4}$ if and only if $p \equiv q \equiv 3(mod4), and(1)^{\frac{(p-1)(q-1)}{4}}$ otherwise.

2 Gauss's Lemma

Let p be an odd prime, q be an integer co-prime to p. Consider the set $\{q, 2q, ..., \frac{(q)(p-1)}{2}\}$ and view each member as an integer in $\{0, 1, ..., p-1\}$. Let u be the number of members in this set that are greater than $\frac{p}{2}$. Then

$$\left(\frac{q}{p}\right) = (-1)^u$$

3 Proof of Gauss's Lemma

Let $\{b_1, ..., b_t\}$ be the members of the set less than $\frac{p}{2}$, and $\{c_1, ..., c_u\}$ be the members greater than $\frac{p}{2}$. Then $u + t = \frac{p-1}{2}$. Consider the sequence $0 < b_1, ..., b_t, p - c_1, ..., p - c_u < p/2$. Each of these are distinct: clearly $b_i \neq b_j$ and $c_i \neq c_j$ whenever $i \neq j$, and if $b_i = p - c_j$, then let $b_i = rq, c_j = sq$. Then r + s = 0, which is a contradiction since $0 < r, s < \frac{p}{2}$. Hence they must be the numbers $\{0, 1, ..., \frac{p-1}{2}\}$ in some order. Thus, $q(2q)...(q(p-1)/2) = b_1...b_tc_1...c_u = (-1)^u b_1...b_t(p-c_1)...(p-c_u) = (-1)^u (\frac{p-1}{2})!$ Divide both sides by $\frac{p-1}{2}$! and we complete the proof.

4 Theorem 1

Let p be an odd prime and q be an integer coprime to p. Let $m = \lfloor q/p \rfloor + \lfloor 2q/p \rfloor + ... + \lfloor ((p-1)/2)q/p \rfloor$. Then m = [u+q-1](mod2), where u is the number of elements in $\{q, 2q, ..., q(p-1)/2\}$ which have a residue greater than $\frac{p}{2}$. When q is odd m = u(mod2).

Proof For any i such that i is an integer between 1, and $\frac{p-1}{2}$, inclusive, the equation $iq = p\lfloor iq/p \rfloor + r_i$ holds for some r_i such that r_i is an integer between 0 and p inclusive. Let $b_1, b_2, ..., b_t$ be the numbers in the set less than $\frac{p}{2}$, while $c_1, c_2, ..., c_t$ be all the other numbers. Summing two equations with b_i and c_i , $q(p^2 - 1)/8 = pm + b_1 + ... + b_t + c_1 + ... + c_u = pm + b_1 + ... + b_t + up + (p - c_1) + ... + (p - c_u) = pm + up + 1 + 2 + ... + (p - 1)/2 = pm + up + (p^2 - 1)/8$ Since p is odd, m = u + q - 12.

5 Proof of Quadratic Reciprocity Law

Using the theorem before, all that's left to prove is that m+n = (p-1)(q-1)/4. Where n is m except when all p's are q's and vice versa. The difference py - qx when x and y equal 1, 2, ..., $\frac{p-1}{2}$, and 1, 2, ..., $\frac{q-1}{2}$, respectively. Therefore, there are a total of $\frac{(p-1)(q-1)}{4}$ possible differences. None of them are zero and n of them are positive and m of them are negative.

6 Eisenstein's Proof

Let line L be a line that runs through (0,0) and (p,q), which can be written as $y = \frac{px}{q}$, and consider the rectangle R which has corners at (0,0), $(0,\frac{q}{2})$, $(\frac{p}{2},\frac{q}{2})$, and $(\frac{p}{2},0)$. We can find the number of lattice points in R. By finding the area of the rectangle we get $\frac{(p-1)(q-1)}{4}$. Another way to count is to count the number points above and below L inside R. This is true since there are no lattice points on L since p, and q are co-prime. We can see that the points on x=1 have y coordinates $1, 2, ..., \lfloor \frac{q}{p} \rfloor$. And the points on x=2 have y coordinates $1, 2, ..., \lfloor \frac{2q}{p} \rfloor$. And the points on x=3 have y coordinates $1, 2, ..., \lfloor \frac{3q}{p} \rfloor$. So then the points on x=j have y coordinates $1, 2, ..., \lfloor \frac{jq}{p} \rfloor$. Which gives a total of m points below L in R. And there are n points above L in R.

7 Restating Eisenstein's Proof algebraically

Consider the numbers px - qy for $x = 1, ..., \frac{p-1}{2}$ and $y = 1, ..., \frac{q-1}{2}$. There are a total of (p-1)(q-1)/4 numbers, not necessarily distinct. None are zero since p, and q are co-prime. We can observe n of them are positive while q of them are negative.

4.1