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1 Quadratic Reciprocity Law

(p—1)(g—1)
1

If the primes p and q are odd, then ( ,or, (1) = (p=(g=1)

(3=

P
. . q(Pfl)(Q*l) .
if and only if p = ¢ = 3(mod4),and(1l)” 2 otherwise.

2 Gauss’s Lemma

Let p be an odd prime, q be an integer co-prime to p. Consider the set
{¢,2q, ..., %} and view each member as an integer in {0,1,...,p — 1}. Let

u be the number of members in this set that are greater than £. Then

3 Proof of Gauss’s Lemma

Let {b1, ..., b} be the members of the set less than £, and {ci, ..., ¢, } be the mem-
bers greater than §. Then v+t = ”2;1. Consider the sequence 0 < by, ..., b, p—
€1, .., p— ¢y < p/2. Each of these are distinct: clearly b; # b; and ¢; # ¢; when-
ever ¢ # j, and if b; = p—c;j, then let b; = rq,c; = sq. Then r+s = 0, which is a
contradiction since 0 < r, s < £. Hence they must be the numbers {0, 1, ..., %}

Divide both sides by p%l! and we complete the proof.

4 Theorem 1

Let p be an odd prime and q be an integer coprime to p. Let m = |¢/p] +
|2q/p] + ... + |((p — 1)/2)q/p). Then m = [u + ¢ — 1](mod2), where u is the
number of elements in {q, 2q, ..., q(p — 1)/2} which have a residue greater than
£. When q is odd m = u(mod2).

in some order. Thus, ¢(2g)...(¢g(p — 1)/2) = by...bycy...c,, = (=1)%b1..b(p — c1)...(p — cu) = (—1)* (E

2

)!



4.1

Proof For any i such that i is an integer between 1, and %71, inclusive, the
equation iq = plig/p] + r; holds for some r; such that r;is an integer between
0 and p inclusive. Let by, b,..., b; be the numbers in the set less than £, while
€1, Co,..., ¢; be all the other numbers. Summing two equations with b; and ¢;,
aP?—1)/8=pm+by + ... + by +c1+ ... +cu
=pm+b+..+b+up+(p—c)+..+{p—cu)
=pm+up+1+2+..+(p—1)/2
=pm+up+(p* —1)/8

Since p is odd, m = u + g — 12.

5 Proof of Quadratic Reciprocity Law

Using the theorem before, all that’s left to prove is that m+n = (p—1)(¢—1)/4.
Where n is m except when all p’s are ’s and vice versa. The difference py — qx

when x and y equal 1,2, ..., prl, and 1,2,..., %, respectively. Therefore, there

are a total of % possible differences. None of them are zero and n of
them are positive and m of them are negative.

6 FEisenstein’s Proof

Let line L be a line that runs through (0,0) and (p,q), which can be written as
Yy = f, and consider the rectangle R which has corners at (0,0), (0,2), (§,4),

and (£,0).We can find the number of lattice points in R. By finding the area of

the rectangle we get W. Another way to count is to count the number
points above and below L inside R. This is true since there are no lattice points
on L since p, and q are co-prime. We can see that the points on x=1 have y
coordinates 1,2, ..., L%J. And the points on x=2 have y coordinates 1,2, ..., L%J.

And the points on x=3 have y coordinates 1,2, ..., L%J. So then the points on

x=j have y coordinates 1,2, ..., Lj?qj. Which gives a total of m points below L
in R. And there are n points above L in R.

7 Restating Eisenstein’s Proof algebraically

Consider the numbers pz — qy for x =1, ..., % and y =1,..., q%l. There are a
total of (p — 1)(¢ — 1)/4 numbers, not necessarily distinct. None are zero since
p, and q are co-prime. We can observe n of them are positive while q of them
are negative.



