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1 Quadratic Reciprocity Law

If the primes p and q are odd, then (p
q )( q

p ) = (1)
(p−1)(q−1)

4 , or, (1) = (p−1)(q−1)
4

if and only if p ≡ q ≡ 3(mod4), and(1)
(p−1)(q−1)

4 otherwise.

2 Gauss’s Lemma

Let p be an odd prime, q be an integer co-prime to p. Consider the set

{q, 2q, ..., (q)(p−1)
2 } and view each member as an integer in {0, 1, ..., p − 1}. Let

u be the number of members in this set that are greater than p
2 . Then(

q

p

)
= (−1)u

3 Proof of Gauss’s Lemma

Let {b1, ..., bt} be the members of the set less than p
2 , and {c1, ..., cu} be the mem-

bers greater than p
2 . Then u+ t = p−1

2 . Consider the sequence 0 < b1, ..., bt, p−
c1, ..., p− cu < p/2. Each of these are distinct: clearly bi 6= bj and ci 6= cj when-
ever i 6= j, and if bi = p−cj , then let bi = rq, cj = sq. Then r+s = 0, which is a
contradiction since 0 < r, s < p

2 . Hence they must be the numbers {0, 1, ..., p−1
2 }

in some order. Thus, q(2q)...(q(p− 1)/2) = b1...btc1...cu = (−1)ub1...bt(p− c1)...(p− cu) = (−1)u
(
p−1
2

)
!

Divide both sides by p−1
2 ! and we complete the proof.

4 Theorem 1

Let p be an odd prime and q be an integer coprime to p. Let m = bq/pc +
b2q/pc + ... + b((p − 1)/2)q/pc.Then m = [u + q − 1](mod2), where u is the
number of elements in {q, 2q, ..., q(p − 1)/2} which have a residue greater than
p
2 . When q is odd m = u(mod2).
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4.1

Proof For any i such that i is an integer between 1, and p−1
2 , inclusive, the

equation iq = pbiq/pc + ri holds for some ri such that riis an integer between
0 and p inclusive. Let b1, b2,..., bt be the numbers in the set less than p

2 , while
c1, c2,..., ct be all the other numbers. Summing two equations with bi and ci,
q(p2 − 1)/8 = pm + b1 + ... + bt + c1 + ... + cu
= pm + b1 + ... + bt + up + (p− c1) + ... + (p− cu)
= pm + up + 1 + 2 + ... + (p− 1)/2
= pm + up + (p2 − 1)/8

Since p is odd, m = u + q − 12.

5 Proof of Quadratic Reciprocity Law

Using the theorem before, all that’s left to prove is that m+n = (p−1)(q−1)/4.
Where n is m except when all p’s are q’s and vice versa. The difference py− qx
when x and y equal 1, 2, ..., p−1

2 , and 1, 2, ..., q−1
2 , respectively. Therefore, there

are a total of (p−1)(q−1)
4 possible differences. None of them are zero and n of

them are positive and m of them are negative.

6 Eisenstein’s Proof

Let line L be a line that runs through (0,0) and (p,q), which can be written as
y = px

q , and consider the rectangle R which has corners at (0,0), (0, q2 ), (p
2 , q2 ),

and (p
2 ,0).We can find the number of lattice points in R. By finding the area of

the rectangle we get (p−1)(q−1)
4 . Another way to count is to count the number

points above and below L inside R. This is true since there are no lattice points
on L since p, and q are co-prime. We can see that the points on x=1 have y
coordinates 1, 2, ..., b qpc. And the points on x=2 have y coordinates 1, 2, ..., b 2qp c.
And the points on x=3 have y coordinates 1, 2, ..., b 3qp c. So then the points on

x=j have y coordinates 1, 2, ..., b jqp c. Which gives a total of m points below L
in R. And there are n points above L in R.

7 Restating Eisenstein’s Proof algebraically

Consider the numbers px− qy for x = 1, ..., p−1
2 and y = 1, ..., q−1

2 . There are a
total of (p− 1)(q − 1)/4 numbers, not necessarily distinct. None are zero since
p, and q are co-prime. We can observe n of them are positive while q of them
are negative.
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