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ALEX T, KARTHIK B

1. Introduction

Definition 1.1. A Farey sequence Fn is the set of rational numbers p
q

with p and q coprime,

and 0 ≤ p ≤ q ≤ n, ordered by size.

Example. F1 =
{

0
1
, 1
1

}
F2 =

{
0
1
, 1
2
, 1
1

}
F3 =

{
0
1
, 1
3
, 1
2
, 2
3
, 1
1

}
F4 =

{
0
1
, 1
4
, 1
3
, 1
2
, 2
3
, 3
4
, 1
1

}
F5 =

{
0
1
, 1
5
, 1
4
, 1
3
, 2
5
, 1
2
, 3
5
, 2
3
, 3
4
, 4
5
, 1
1

}
Farey sequences come from as far back as 1747. In the 1747 edition of ”The Ladies Diary:

or, the Woman’s Almanac” there was the following question:
It is required to find (by a general theorem) the number of fractions of different values,

each less than unity, so that the greatest denominator be less than 100?
This is equivalent to asking the size of the 99th Farey sequence. It turns out this problem

is hard. It took the 18th century mathematicians 4 years to solve it.
This paper proves a method of generating the Farey sequence using the mediant, followed

by a way to approximate any real number using fractions: Hurwitz’s theorem.

Definition 1.2. The mediant of two fractions is given by p
q
⊕ r

s
= p+r

q+s
.

Sometimes it will be convenient to have some kind of ”weighted mediant” function. [Idi18]

Definition 1.3. The weighted mediant of two fractions is given by p
q
(a⊕ b) r

s
= ap+br

aq+bs
. This

means that the simple mediant can be expressed as p
q
(1⊕ 1) r

s
.

2. Generating the Farey Sequence

Let us look at various methods of generating the Farey sequence. It is trivial to show that
if you are allowed to take the mediant of any two terms from the previous sequence you will
get the entire addition list to the next one - p

q
= p−1

p
(1⊕ 1) 1

q−p
. It isn’t trivial to show that

taking the mediant of two adjacent terms provides the same.

Example. Let’s first check by providing an example if this has a chance of working at all.
Since F5 = F4 ∪ {15 ,

2
5
, 3
5
, 4
5
}, we just need to show that by taking the mediant of adjacent

terms in F4 you get those. 0
1
(1⊕ 1)1

4
= 1

5
, 1
3
(1⊕ 1)1

2
= 2

5
, 1
2
(1⊕ 1)2

3
= 3

5
, 3
4
(1⊕ 1)1

1
. So, this

is at least true for F5.

Since this holds to the first level of checking-trying an example-let’s see if we can prove it.
To prove this, we need some lemmata.
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Lemma 2.1. p
q
< p

q
(a⊕ b) r

s
< r

s
, where a, b, q, s > 0, p

q
< r

s
.

To prove this lemma, the best method is just algebra.

Proof.

p

q
(a⊕ b)r

s
=
ap+ br

aq + bs
.
ap+ br

aq + bs
− p

q
=
apq + brq − aqp− bsp

aq2 + bsq
= b

rq − sp
aq2 + bsq

.

This means we need rq − sp > 0. Since p
q
< r

s
, ps < rq, that is true. Thenceforth p

q
<

p
q
(a⊕ b) r

s
. Now,

r

s
− ap+ br

aq + bs
=
aqr + bsr − aps− brs

aqs+ bs2
= a

qr − ps
aq + bs2

.

Since q
r
> p

s
, qr > ps and so p

q
(a⊕ b) r

s
< r

s
. Q.E.D. �

We also need the weighted mediant to be simplified.

Lemma 2.2. If gcd(p, q) = gcd(a, b) = gcd(r, s) = 1, and rq− ps = 1 then gcd(ap+ br, aq+
bs) = 1.

Proof. If
gcd(q ∗ (ap+ br), p ∗ (aq + bs)) = 1,

then obviously
gcd(ap+ br, aq + bs) = 1,

since we are just adding potential common divisors. We want

gcd(apq + brq, apq + bps) = 1,

but we can be satisfied by at least simplifying it. Let’s use the Euclidean algorithm.

apq + brq − paq − bps = b(rq − ps) = b.

So, we want
gcd(b, aq + bs) = 1.

It doesn’t matter which one we replace, after all. Using the Euclidean algorithm again, we
need gcd(apq, b) = 1. Since gcd(a, b) = 1, we can get rid of the a.

gcd(pq, b) = 1.

Henceforth,
gcd(ap+ br, aq + bs)|b.

Now, that means we can look at this mod b.

gcd(ap+ br, b) = gcd(ap, b) = gcd(p, b).

gcd(aq + bs, b) = gcd(aq, b) = gcd(q, b).

Since gcd(p, q) = 1, we know that they can’t share any divisors, and so each half of the gcd
have separate divisors of b and share none, and so gcd(ap+ br, aq + bs) = 1. Q.E.D. �

One more interesting lemma we need is as follows.

Lemma 2.3. For all fractions p
q
< x

y
< r

s
,∃a, b ∈ Z+ s.t. p

q
(a⊕ b) r

s
= x

y

Proof. Let a = ry − sx, b = qx − py. They are both positive because of the relationship of

the fractions. p
q
(a⊕ b) r

s
= ap+br

aq+bs
= rpy−sxp+qxr−pyr

ryq−sxq+qxs−pys
= qxr−sxp

ryq−pys
= x(rq−sp)

y(rq−sp)
= x

y
. �
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Theorem 2.4. You can generate Fn by taking all the mediants of adjacent terms of Fn−1

with denominators n, and adding those on to Fn−1.

To make it provable via induction, we need to add additional information.

Theorem 2.5. You can generate Fn by taking all the mediants of adjacent terms of Fn−1

with denominators n, and adding those on to Fn−1. Also, adjacent terms of the Fn,
p
q
, r
s

satisfy rq − ps = 1.

Proof. We are going to prove this by induction. The base case is trivial. F2 can be generated
by taking the mediants of F1, as the mediant of 0

1
and 1

1
is 1

2
, the one term added. Also,

1 ∗ 1− 0 ∗ 2 = 1, 2 ∗ 1− 1 ∗ 1 = 1.
The inductive step is harder. Assume this is true for Fn−1. We need this to be true for

Fn. First, due to 2.3, for all x
n

we need to add, we know that there is some a, b such that the
terms surrounding it when taken the weighted mediant spit that out. Obviously there isn’t
already something in between, so what matters is the weighted mediant with the smallest
denominator.

Since 2.2 says that it is impossible to simplify any mediant from Fn−1 due to the second
part of our assumption, the smallest denominator mediant is the (1, 1) mediant, or the
original. It follows that by taking the mediants, you will get the whole Fn.

We still need to check the second part, i.e. rq − ps = 1. Via the inductive hypothesis, we
know that if we didn’t add a mediant, then this remains true. If we did, then we have the
new series of Farey neighbors p

q
, p+r
q+s

, r
s
. We know from the inductive hypothesis rq− ps = 1,

and so we look at pq + rq − pq + sp = 1, and rq + sr − sp− sr = 1. Q.E.D. �

3. Hurwitz’s Theorem

Surprisingly, Farey sequences can be used in approximating irrational numbers.
Hurwitz’s Theorem [ADPW18] states that:

Definition 3.1. Given any irrational number ε, there exists infinitely many rational numbers
h, k such that

| ε− h

k
|< 1√

5k2
.

has infinitely many rational solutions p
q
.

Proof. Proof by contradiction: We start off with two consecutive terms in Farey Sequence
Fn

a
b
, c
d

with ε in between the two, and their mediant

a+ c

b+ d
=
e

f

Assumption: Assume that the statement of Hurwitz’s theorem is false and that

ε− a

b
≥ 1√

5b2

ε− c

d
≥ 1√

5d2

ε− e

f
≥ 1√

5f 2
.
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For the purposes of this proof we rewrite the second inequality into

c

d
− ε ≥ 1√

5d2
.

Adding the first and third equation to the second separately results in getting two equa-
tions

c

d
− a

b
≥ 1√

5

(
1

d2
+

1

b2

)
c

d
− e

f
≥ 1√

5

(
1

d2
+

1

f 2

)
.

We know that c
d
− a

b
= bc−ad

bc
= 1

bc
, and c

d
− e

f
= cf−de

df
= 1

df
. So, we can simplify those two

inequalities into
1

bd
≥ 1√

5

(
1

d2
+

1

b2

)
1

df
≥ 1√

5

(
1

d2
+

1

f 2

)
.

Getting rid of the fractions gets

bd
√

5 ≥ d2 + b2, df
√

5 ≥ d2 + f 2

Add these two together, and using the fact that f = b+ d, we get

(b+ f)d
√

5 = (2b+ d)d
√

5 ≥ 2d2 + b2 + f 2 = 3d2 + 2b2 + 2bd.

When we subtract off the left side to make it zero, we have a square left.

0 ≥ 3d2 + 2b2 + 2bd− (2b+ d)d
√

5 =
1

2
((
√

5− 1)d− 2b)2.

Henceforth 1
2
((
√

5 − 1)d − 2b)2 = 0, or (
√

5 − 1)d − 2b = 0. Adding 2b and dividing by d

gets us
√

5− 1 = 2b
d

, which means that 2b
d

is irrational, which is false, as b and d are integers.
Contradiction. Q.E.D. �
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