
ELLIPTIC-CURVE CRYPTOGRAPHY

TRISHA SABADRA

Abstract. For decades, public-key cryptography has been vital for secure online
communication. As computing power grows and more advanced algorithms are
developed, the widely used Diffie-Hellman and RSA algorithms require larger keys
for security. Elliptic curve cryptography (ECC) offers a more efficient alternative
to RSA, achieving equivalent security with smaller keys and reduced computing
power. This paper explores how elliptic curves are used in modern cryptography,
current limitations, and potential future developments. Addressing the threat of
quantum computers to public-key systems, we discuss a recent attack to super-
singular elliptic curve isogenies, prompting further research into quantum-resistant
cryptographic solutions.

1. Introduction to Cryptography

Before the 1970s, for two parties to securely communicate without a third party
intercepting the message, they had to physically meet and agree on a shared secret.
This kind of cryptography is known as symmetric, because a single key is used for
both encryption and decryption. While effective in the early 20th century, the rise of
computer network communication and frequent online transactions spurred the need
for two parties to quickly and securely communicate without ever actually meeting.

1.1. Diffie-Hellman Key Exchange.
In 1976, Diffie, Hellman, and Merkle invented one of the first asymmetric or public
key cryptosystems, allowing two parties to establish a shared secret key without
prior communication. In public key encryption, the encryption and decryption are
performed using a combination of public (known to everyone) and private (secret)
keys. The mathematics behind the Diffie-Hellman Key Exchange is based on the
discrete logarithm problem.

Definition 1. We denote the discrete logarithm problem in the finite field of
integers modulo prime p as follows: given g, k ∈ Z/pZ, find an integer a such that:

ga ≡ k mod p

Let’s do a quick run through of this: Let’s say Alice and Bob want to communicate
securely without Eve eavesdropping.

(1) Alice and Bob publicly agree on a prime p and an integer g
(2) Alice randomly chooses a private integer a and Bob chooses b, both between

1 and p.
(3) Alice calculates ga mod p, Bob calculates gb mod p, and they publicly ex-

change the result.
(4) Both sides have the shared key k such that

k = (gb)a mod p = (ga)b mod p = gab mod p
1

2 TRISHA SABADRA

The security of Diffie-Hellman Key Exchange rests on the assumption that while
Alice and Bob can quickly compute the shared key, the third party Eve will be
unable to get the shared key without solving the discrete logarithm problem - which
is believed to be exponentially hard. Thus, the discrete logarithm problem is an
example of a trapdoor function, where one direction is easy to compute, while the
inverse is hard.

Example. Calculating 329 mod 17, is easy, but finding a given 3a mod 17 ≡ 12 is
harder. Because a computer can quickly brute force this example to find a = 29, the
recommended order of the prime modulus is 2048 bits - which could take thousands
of years to run through all possibilities!

1.2. RSA.
In 1977, Ron Rivest, Adi Shamir, and Leonard Adleman proposed another public
key encryption scheme, known as RSA. The security of RSA is based on a similar
problem to Diffie-Hellman, the discrete factoring problem.

Definition 2. We denote the discrete factoring problem as follows: given an
integer N, find primes p, q such that pq = N.

RSA was the first widely used public key algorithm and is still used in many
modern protocols. However, the general number field sieve can solve the factoring
problem in sub-exponential time. This algorithm, coupled with the rise in compu-
tational power, raises scalability concerns for RSA, necessitating the growth of key
sizes to maintain security (like DH, the recommended key size is a minimum of 2048
bits). Given that these systems might be present on low-computing power devices
like mobile phones or chips, many are concerned that longer keys can negatively
impact the performance of application because of the processing power required for
encryption and decryption.

2. Elliptic Curves

After the introduction of RSA and Diffie-Hellman, researchers explored other
mathematics-based solutions for cryptography - looking for algorithms that would
serve as good trapdoor functions and achieve an equivalent level of security with
less computing power. In 1985, Neal Koblitz and Victor S. Miller independently
suggested the use of elliptic curves in cryptography.

Definition 3. An elliptic curve is the set of solutions (x, y) of

y2 = x3 + ax+ b

for some numbers a, b, together with the point at ∞. We require that the discriminant
∆ = −16(4a3 + 27b2) ̸= 0, meaning that x3 + ax+ b has no repeated roots.

2.1. Group Law. What makes elliptic curves so important to cryptography is that
the rational points on the curve form an abelian group, which allows us to add
together points on the curve.

To define the group structure, we make the identity of the group the “point at
infinity.” This sounds quite abstract - but we can think of it as a point that all
vertical lines go through.

Note that for each point P = (x, y) on the curve, the point P ′ = (x,−y) must
also be on the curve - so we can define P and P ′ as inverses in the group.

ELLIPTIC-CURVE CRYPTOGRAPHY 3

Now, what does it actually mean to add two points on the elliptic curve? We
can look at this geometrically: take two points P and Q on an elliptic curve E and
draw a line connecting them. This line intersects the curve at a third point, call it
−R. Reflecting this point across the x-axis (i.e taking the inverse) we get the point
R = P +Q.

Note that this construction is not possible if Q = −P because the line through P
and Q is vertical, so −P + Q = ∞. If P = Q, i.e we want to double a point, we
take the tangent to the curve at P and use the second intersection with the curve
as the point −R.

2.2. Elliptic Curves over Finite Fields. For elliptic curve cryptography, we are
interested in elliptic curves over finite fields, which is very similar to the definition
of elliptic curves over the reals.

Definition 4. For prime p, let Fp = Z/pZ be the finite field of integers from 0 to
p− 1. The elliptic curve E over Fp is the set of solutions of

y2 ≡ x3 + ax+ b mod p

for x, y ∈ Fp.

Like the previous definition of elliptic curves, the cubic polynomial has no repeated
roots in Fp, together with the point at ∞. This means −16(4a3+27b2) mod p ̸= 0.
The graph of elliptic curves over a finite field doesn’t looks like a curve in the

traditional sense, as it is just a discrete set of points. You can think of it as the
original curve “wrapped” around at the edges, but only the whole number coordi-
nates have points on the graph. Like E(Q), E(Fp) forms a group, so we can carry
over the group law for adding points.

Definition 5. Using this operation, we can define scalar multiplication on the
group by repeatedly adding a point to itself:

nP = P + P + · · ·+ P

n times

Definition 6. The order of a point P is the smallest positive integer n such that
nP = ∞, where ∞ is the identity of the group.

4 TRISHA SABADRA

Figure 1. Given points P = (3, 0) and Q = (14, 11)
on the elliptic curve above, we draw a line between P and Q and “wrap” it around
the graph modulo 17. Taking the inverse, we get the point R = P +Q = (1, 2)

Example. Let E be the elliptic curve y2 = x3 + 2x + 1 in F17 (shown in the
image above). Say we start with the point P = (2, 8). Then we can find the points
generated by P

2P = (5, 0)

3P = (2, 9)

4P = ∞

5P = (2, 8)

. . .

This generates the cyclic subgroup: {∞, (2, 8), (5, 0), (2, 9)}. Since 4P = ∞, the
order of P is 4.

We can compute nP efficiently for large n using the double-and-add method.

(1) initialize the resulting point Q = 0
(2) for each bit in the binary representation of n:

(a) double Q
(b) if the current bit is 1, add P to Q.

Since we are only iterating over log2(n) bits, this method can compute nP in
O(log(n)) time, which is exponentially better than the the naive linear algorithm of
simply adding P to itself n times.

ELLIPTIC-CURVE CRYPTOGRAPHY 5

3. Elliptic Curve Cryptography (ECC)

The biggest advantage of ECC over RSA and Diffie-Hellman is efficiency - ECC
allows the use of smaller keys while maintaining the same level of security as RSA,
resulting in faster encryption and less memory. Arjen K. Lenstra visualized this
in a unique way, comparing how much water the energy that is needed to break
a cryptographic algorithm could boil - a kind of cryptographic carbon footprint
[LKT13]. By this measure, breaking a 228-bit RSA key requires less energy than it
takes to boil a teaspoon of water, while breaking a 228-bit elliptic curve key requires
enough energy to boil all the water on earth. For this level of security with RSA,
you’d need a key with 2,380-bits.

The reason that ECC can use smaller keys is because it is computationally more
challenging than breaking RSA - the fastest attacks on ECC run in exponential time,
while RSA can be broken in sub-exponential time. Consequently, RSA is considered
”easier” to break and is thus more susceptible to potential attacks.

After a slow start, elliptic curve cryptography is now used in a wide variety of
applications: the U.S. government uses it to protect internal communications, it is
the mechanism used to prove ownership of bitcoins, and it provides signatures in
Apple’s iMessage service. While RSA and Diffie-Hellman are still the norm, elliptic
curve cryptography has become the leading alternative for privacy and security
online.

3.1. Elliptic Curve Diffie-Hellman (ECDH). Like the regular Diffie-Hellman,
the ECDH is a key exchange protocol based on the discrete logarithm problem
[Woh16]

Definition 7. We denote the elliptic curve discrete logarithm problem (ECDLP)
as follows: given the elliptic curve E on the finite field Fp and points P,Q on E,
find the smallest integer n such that nP = Q.

Lets run through the ECDH with Alice and Bob:

(1) They agree on the public prime p, elliptic curve E over the finite field Fp,
random point P on E, and the order n of P (for the discrete logarithm
problem to be difficult on elliptic curves, the order n needs to be large).
This generates the cyclic subgroup:

{∞, P, 2P, 3P, . . . , (n− 1)P}

(2) Alice and Bob each randomly choose a private key from 1 to n− 1, a and b
respectively.

(3) Alice calculates the public key QA = aP and Bob calculates QB = bP
efficiently using the double and add algorithm.

(4) They exchange public keys and each compute the shared key aQB = bQA =
abP . They can use the x or y coordinate of the point as the shared key.

Example. Let the elliptic curve E be y2 ≡ x3 + 2x + 2 mod 17 and the generator
point P = (5, 1). Calculating the multiples of P, we get 19P = ∞, so the order
n = 19. Say Alice privately chooses a = 3 and Bob chooses b = 9. They calculate
the points QA = 3P = (10, 6) and QB = 9P = (7, 6) and exchange them. Alice
computes 3QB = (13, 7) and Bob computes 9QA = (13, 7). They get the same point
because 3(9P) = 9(3P) = 27P = 8P = (13, 7).

6 TRISHA SABADRA

Eve knows the starting point P and the ending points QA and QB, but the scalars
a, b are private, so she will be unable to get the shared key without solving the
discrete logarithm problem, for which no efficient algorithm is known. Thus, this is
a trapdoor function because computing nP can be done efficiently, but the opposite
direction, namely finding n given P and nP is hard.

3.2. Elliptic Curve Integrated Encryption Scheme (ECIES).
The shared key generated from ECDH can be used to set up a secured symmetric
channel for communication. This is known as a hybrid encryption scheme, as it
leverages the efficiency of symmetric-key encryption for encrypting the actual mes-
sage and the convenience of public-key cryptography for securely agreeing on the
shared key. Here is a high level description of how ECIES works (for more details
see [Bro09])

(1) Alice and Bob follow the ECDH protocol to derive a shared secret S
(2) They compute a symmetric key k using a key derivation function: k =

KDF(S)
(3) Using an authenticated encryption scheme, Alice encrypts her message m

with the key k to get the ciphertext c = E(k;m)
(4) Alice computes a message authentication code (MAC) d of her encrypted

message
(5) Alice sends the c and d to Bob
(6) Bob uses the authentication tag d to ensure that the message is from Alice

and hasn’t been changed.
(7) Bob decrypts the message m = E−1(k; c)

3.3. Elliptic Curve Digital Signature Algorithm (ECDSA).
Another advantage of elliptic curve cryptography is that Alice can “sign” a message,
so that Bob can verify that the message is from Alice, and there was no third party
interference. Here is an overview of the signature generation algorithm:

(1) Alice and Bob publicly agree on an elliptic curve E over Fp, and a point P
on E.

(2) Alice takes a hash of her message m and truncates it so that it has bit-length
n, where n is the order of the subgroup generated by P. Let z be the resulting
truncated hash of m.

(3) Alice privately chooses an integer k between 1 and n and computes Q =
(x1, y1) = kP.

(4) Let r = x1 mod n. If r = 0, Alice must go back to step 3 and choose another
k.

(5) Alice calculates s = k−1(z + rdA) mod n, where dA is Alice’s private key
and k−1 is the multiplicative inverse of k mod n. If s = 0, go back to step 3
and choose another k.

(6) The pair (r, s) forms the signature

Now to verify Alice’s signature, Bob uses Alice’s public key QA (the end point)
and proceeds as follows:

(1) Bob computes u1 = zs−1 mod z
(2) Bob computes u2 = rs−1 mod z
(3) Bob computes the point Q = (x1, y1) = u1P + u2QA

(4) If r ≡ x1 mod n, then Bob knows the message came from Alice.

ELLIPTIC-CURVE CRYPTOGRAPHY 7

Proof. We start with Q as described above. QA = aP, where a is Alice’s private
key.

Q = u1P + u2QA

= u1P + u2aP

= (u1 + u2a)P

Now let s = k−1(z + rdA). Then,

Q = (zs−1 + rs−1a)P

= s−1(z + ra)P

= kP

So in both cases we found the point Q, which would have only been possible if the
message was signed by Alice’s private key. This completes the proof.

3.4. Pollard’s ρ Algorithm.
Although there is currently no mathematical proof for the complexity of the discrete
logarithm problem, the security of ECC relies on the claim that it is “hard” to solve.
To get an idea of how “hard” it is, we’ll look at Pollard’s ρ Algorithm, currently
the most efficient classical algorithm for computing discrete logarithms on elliptic
curves [WIN].

Definition 8. With Pollard’s ρ, we first solve a slightly different problem: given P
and Q, find integers a, b, A,B where (a, b) ̸= (A,B) such that

aP + bQ = AP +BQ

If we just try all possible pairs (a, b) and (A,B) randomly, we have an O(k2)
running time (or O(22m), where m is the bit length). However, there is a more
efficient method: Floyd’s cycle finding algorithm

(1) Choose a random sequence S of points and start the pointers p1 = (a, b), p2 =
(A,B) start at the beginning of S.

(2) In each iteration, p1 moves one step, while p2 moves two steps along the
sequence.

(3) Stop when aP + bQ = AP +BQ, i.e p1 and p2 are at the same point within
the cycle.

Figure 2. In this example, we have the curve y2 ≡ x3 + 2x + 3
mod 97 and the points P = (3, 6) and Q = (80, 87), belonging to a
cyclic subgroup of order 5. We walk the sequence of pairs at different
speeds until we find the pairs (3, 3) and (2, 0) that produce the same
point.

8 TRISHA SABADRA

The reason why the algorithm must terminate is that the subgroup is finite and
cyclic, so it will eventually find a pair that works.
Once a, b, A,B are found, we can substitute xP = Q and solve for x :

aP + bQ = AP +BQ

aP + bxP = AP +BxP

(a− A)P = (B − b)xP

Now we can cancel out P, but since the subgroup is cyclic with order n, we solve it
modulo n:

a− A ≡ (B − b)x mod n

x = (a− A)(B − b)−1 mod n

Thus, we found x such that xP = Q.

The hard part is analyzing the complexity of the algorithm, but a probabilistic
proof can show a bound of roughly O(

√
k). The proof is based on the “birthday

paradox,” which is about the probability of two people having the same birthday,
where here we are concerned about the probability of two (a, b) pairs yielding the
same point. Although this time complexity is better than a brute force attack, it
is still exponential time (O(2m/2)), so in practice, it takes months for Pollard’s ρ to
break a standard elliptic curve protocol. Thus, elliptic curves will likely remain at
the center of public key cryptography for many years.

3.5. Challenges.
The choice of elliptic curve parameters and key sizes is crucial for ensuring the secu-
rity of the digital signatures, but the domain parameters are expensive to generate,
so the curves need to be pre-computed in advance. The US National Institute of
Standards and Technology (NIST) provides guidelines for selecting secure elliptic
curves, however, these standard curves are complicated to implement securely in
practice. Yet, looming over these considerations is a far-reaching threat: quantum
computing.

4. Post-Quantum ECC

A quantum computer works in a completely different way from a classical com-
puter. Unlike classical bits, which are either 0 or 1, quantum bits or qubits represent
a probability to be either 0 or 1. We say that a qubit can exist in a superposition
state of both 0 and 1 simultaneously. The probabilities of measuring the qubit in
states 0 or 1 are given by the squaring the amplitudes.

Example. Mathematically, we can represent a qubit’s state as follows:

|x⟩ = 0.8|0⟩+ 0.6|1⟩ −→ |x⟩ = 64%|0⟩+ 36%|1⟩
This means that a set of two qubits can be in a superposition of four states,

which therefore require four numbers to uniquely identify the state. So the amount
of information stored in n qubits is 2n classical bits. Thus, quantum computers
don’t speed up individual operations, but the number of operations to get the result
is exponentially smaller. However, the resulting state is limited, because although
a qubit can exist in a superposition, when we measure the state of a qubit, we get
a single random value.

ELLIPTIC-CURVE CRYPTOGRAPHY 9

4.1. Shor’s Algorithm.
In 1994, Peter Shor showed that a quantum computer could factor large numbers
and solve the discrete logarithm problem in polynomial time rather than exponential
[Sho94]. The key to the polynomial running time of Shor’s algorithm is a particular
procedure on quantum computers call the Quantum Fourier Transform. We won’t
present the QFT in this paper, but essentially it allows us to find the period of a
cyclic function. Here is a brief overview of Shor’s Algorithm for the large prime
factorization problem:

Suppose we want to find primes p, q such that pq = n for some large n. We can first
reduce the factoring problem to the problem of order-finding.

(1) Choose some g < n such that g and n are coprime.
(2) Note that f(x) = gx mod n is a cyclic function because the remainders

cycle. Thus, to find the smallest r such that gr ≡ 1 mod n, we can apply
the QFT to the function to find the period (since the period is the same
value as r).

(3) Once we know r, we can rearrange:

gr − 1 ≡ 0 mod n

(gr/2 − 1)(gr/2 + 1) ≡ 0 mod n

(4) If r is odd, go back to step 1 and choose another g. If r is even, then a =
gr/2 − 1 and b = gr/2 + 1 are integers that share factors with n.

(5) Use Euclid’s algorithm to find gcd(a, n), which will give p or q.

Shor’s algorithm for the discrete logarithm problem is very similar. Suppose we want
to find x such that gx ≡ k mod p. First, apply QFT to find the smallest integers
r, s such that gr ≡ 1 mod p and ks ≡ 1 mod p. Then, set them equal and solve:

gr ≡ ks mod p

gr ≡ gxs mod p

1 ≡ gxs−r mod p

xs ≡ r ≡ 0 mod r

Finally, we can use Euclid’s algorithm to find x = r
gcd(r,s)

.

If and when large quantum computers become practical, Shor’s algorithm poses a
significant threat to all current widely used public-key cryptographic systems. As
Shor’s algorithm can efficiently break the discrete logarithm problem in polynomial
time, it is crucial to explore quantum-resistant schemes. One class of quantum-
resistant encryption methods that stands out is isogeny-based encryption, as it
employs the shortest keys and the most sophisticated math. While current ECC
methods perform computations on elliptic curves, isogeny methods are based on
networks of functions between elliptic curves. Before we delve deeper into isogeny-
based encryption, we provide a brief introduction to isogenies between elliptic curves.

10 TRISHA SABADRA

4.2. Background.

Definition 9. Let E1 and E2 be elliptic curves over a finite field Fp, where p is a
prime power. An isogeny ϕ : E1 −→ E2 is a rational map between E1 and E2.

It is surjective, so every point in E1 maps to a point in E2. ϕ is also a group
homomorphism, i.e it preserves the group law for points P,Q on E1:

ϕ(P +Q) = ϕ(P) + ϕ(Q)

The kernel of ϕ, denoted as ker(ϕ), is the set of points on E1 that map to the
identity in E2. The degree for separable isogenies is equivalent to the number of
points in the kernel. We won’t define separability in this paper, but we will be
mostly working with separable isogenies.

Example. Consider the two elliptic curves E1 : y2 = x3 + x + 1 and E2 : w2 =
z3+16z+64.We have the degree-1 isogeny ϕ : E1 → E2 sending a point (x, y) ∈ E1

to (4x, 8y) ∈ E2. To confirm this is true, we can make the substitution:

(8y)2 = (4x)3 + 16(4x) + 64

64y2 = 64x3 + 64x+ 64

y2 = x3 + x+ 1

Definition 10. If E1 = E2 then ϕ is called an endomorphism. The set of endomor-
phisms under addition and composition from a ring, denoted by End(E).

In SIDH, the j-invariant uniquely characterizes the supersingular elliptic curve
isogenies involved in the key exchange process. It is crucial because the security
of SIDH relies on the difficulty of computing isogenies between curves with specific
j-invariants.

Definition 11. We define the j-invariant for the elliptic curve y2 = x3 + ax+ b as:

j(E) = 1728
4a3

4a3 + 27b2

The two types of elliptic curves we have are ordinary and supersingular. The precise
definition of supersingular is not important for cryptographic purposes, but what is
important is that elliptic curves in the same isogeny class are either all supersingular
or all ordinary. SIDH is based on isogenies between supersingular curves.

ELLIPTIC-CURVE CRYPTOGRAPHY 11

4.3. Supersingular Isogeny Diffie-Hellman (SIDH).
In 2011, De Feo, Jao, and Plût introduced SIDH, a promising quantum-resistant
cryptographic protocol which includes entity authentication, key exchange, and
public-key cryptography [DFJP11]. The Supersingular Isogeny Key Exchange (SIKE)
is just one part of this protocol based on the difficulty of computing isogenies be-
tween supersingular elliptic curves. Note that many steps of the key exchange pro-
cess involve complex isogeny calculations, so in this paper, we review SIKE at a high
level:

(1) Alice and Bob decide on the following public parameters:
(a) A prime p of the form p = aebd ± 1, where a, b are small primes and

d, e ∈ Fp2

(b) A supersingular curve E over Fp2

(c) Fixed elliptic points PA, QA, PB, QB on E, such that PA, QA, has order
ae and PB, QB has order bd

(2) Alice and Bob each choose two random integers ma, na < ae and mb, nb < bd

and generate kernels

KA = maPA + naQA

KB = mbPB + nbQB

(3) They use their respective points RA, RB to create isogeny mappings:

ϕA : E −→ EA

ϕB : E −→ EB

(4) Using their respective isogenies, Alice and Bob compute the points ϕA(PA), ϕA(QA)
and ϕB(PB), ϕB(QB) on the curves EA and EB.

(5) They exchange their public keys. Alice sends Bob EA, ϕA(PA), ϕA(QA), and
Bob sends Alice EB, ϕB(PB), ϕB(QB).

(6) With Bob’s curve, Alice creates the secret isogeny ψA : EB → EAB and Bob
creates ψB : EA → EBA

Figure 3. In this example, Alice computes a 26-isogeny, which cor-
responds to a walk of length six in her 2-isogeny graph. Similarly, Bob
computes a 34-isogeny, corresponding to a walk of length four in his
3-isogeny graph.

12 TRISHA SABADRA

(7) Each isogeny has kernel K ′
A, K

′
B respectively:

K ′
A = maϕB(PB) + naϕB(QB)

K ′
B = mbϕA(PA) + nbϕA(QA)

(8) Because j(EAB) = j(EBA), this helps form the shared secret k between Alice
and Bob (a function of k is actually used as the shared secret). [SH19]

Finding an isogeny between two random elliptic curves is conjectured to be ex-
tremely hard, even for a quantum computer. However, the problem is that Alice
and Bob aren’t only exchanging their elliptic curves EA, EB; they are also each pub-
licly sharing the auxiliary points ϕA(PA), ϕA(QA) and ϕB(PB), ϕB(QB). We need
the points to run the protocol, but this extra information makes it vulnerable to
attacks. On July 22nd, 2022, Wouter Castryck and Thomas Decru published a poly-
nomial time algorithm capable of recovering the secret encryption keys - essentially
breaking SIDH [CD23]. What surprised most people was that this was a classi-
cal attack, and does not require quantum computers at all. The paper shows how
SIDH is vulnerable to a theorem developed by Ernst Kani in 1997 that characterizes
reducibility.

A key aspect of the attack is that we target Bob’s secret isogeny ϕB : E −→ EB,
which can be viewed as a secret path in the 3-isogeny graph. In other words, there
is a sequence of curves E → E1 → E2 → · · · → EB connected by 3-isogenies.
Essentially, the attack determines the intermediate curves Ei, and at step i the
attack does a brute-force search of all possible Ei → Ei+1, eventually determining
the private key.

Since SIKE and SIDH were proved as insecure, they will not be standardized for
post-quantum public key exchange. However, since the attack assumes that the
extra point information that Alice and Bob exchange and the fixed degrees of their
respective isogenies are public, many other isogeny-based cryptographic protocols –
such as CSIDH, SQISign, and M(D)-SIDH – do not provide all this information and
are hence still considered secure! In addition, in December 2016, NIST initiated the
process of post-quantum cryptography standardization by issuing a public call for
submissions. In August of 2023, following several rounds of selection and evaluation,
NIST published the draft documents for the three selected algorithms. Two of
these algorithms are lattice-based cryptography, and the third is hash-based [Ber09].
Therefore, despite the vulnerability of SIDH, the resilience of alternative methods
and ongoing standardization efforts signal a commitment to advancing secure post-
quantum cryptographic solutions.

References

[Ber09] Daniel J. Bernstein. Introduction to post-quantum cryptography, pages 1–14. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Bro09] Daniel RL Brown. Standards for efficient cryptography 1 (sec-1). Standards for Efficient
Cryptography, 2009.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 423–447. Springer, 2023.

[DFJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2011.

ELLIPTIC-CURVE CRYPTOGRAPHY 13

[LKT13] Arjen K Lenstra, Thorsten Kleinjung, and Emmanuel Thomé. Universal security: From
bits and mips to pools, lakes–and beyond. In Number Theory and Cryptography: Papers
in Honor of Johannes Buchmann on the Occasion of His 60th Birthday, pages 121–124.
Springer, 2013.

[SH19] Vladimir Soukharev and Basil Hess. Pqdh: a quantum-safe replacement for diffie-
hellman based on sidh. Cryptology ePrint Archive, 2019.

[Sho94] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review, 41(2):303–332, 1994.

[WIN] NOLAN WINKLER. The discrete log problem and elliptic curve cryptography. pages
8–9.

[Woh16] Jeremy Wohlwend. Elliptic curve cryptography: Pre and post quantum. Recuperado
de http://math. mit. edu/ apost/courses/18.204-2016/18.204 Jeremy Wohlwend final
paper. pdf, 2016.

Euler Circle, Mountain View, CA 94040
Email address: trisha.sabadra@gmail.com

	1. Introduction to Cryptography
	1.1. Diffie-Hellman Key Exchange
	1.2. RSA

	2. Elliptic Curves
	2.1. Group Law
	2.2. Elliptic Curves over Finite Fields

	3. Elliptic Curve Cryptography (ECC)
	3.1. Elliptic Curve Diffie-Hellman (ECDH)
	3.2. Elliptic Curve Integrated Encryption Scheme (ECIES)
	3.3. Elliptic Curve Digital Signature Algorithm (ECDSA)
	3.4. Pollard's Algorithm
	3.5. Challenges

	4. Post-Quantum ECC
	4.1. Shor's Algorithm
	4.2. Background
	4.3. Supersingular Isogeny Diffie-Hellman (SIDH)

	References

