
Arithmetic Dynamics
The study of the number-theoretic properties of rational and algebraic points under

repeated application of a polynomial or rational function.

Shihan Kanungo
Euler Circle, Palo Alto, CA 94306

Abstract

In this expository paper, we investigate the topic of arithmetic dynamics. Discrete dynam-

ical systems is the study of iteration of functions. Number theory is the study of properties

of integers. Combine the two and you land in the brave new world of arithmetic dynamics,

wherein we study number theoretic properties of orbits of integers and rational numbers

under iteration of polynomials and rational functions. The main idea of arithmetic dy-

namics is that we take a function from some set to itself, and we look at how it behaves

as we iterate it over and over. In particular, we will first define the set of p-adic numbers

and introduce some useful results regarding them. Then we will look at an application of

arithmetic dynamics, and we will relate it to dynamics in the p-adic numbers.

1 Introduction

In this paper, we investigate the topic of arithmetic dynamics. Whereas classical discrete
dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic
dynamics is the study of the number-theoretic properties of rational and algebraic points
under repeated application of a polynomial or rational function.

‚ Number Theory: Study properties of
integers and rational numbers

‚ Algebraic Geometry: Study solutions
to systems of polynomial equations

‚ (Discrete) Dynamical Systems:
Study orbits of iteration of functions

‚ Arithmetic Dynamics: Study number-
theoretic properties of orbits of rational
numbers for iteration of polynomial func-
tions.

Figure courtesy of Joseph H. Silverman, Arithmetic Dynamics: A Survey, International Congress of Mathematicians 2022

A principal theme of arithmetic dynamics is that many of the fundamental problems in the
theory of Diophantine equations have dynamical analogs.

While number theory looks for patterns in sequences of numbers, dynamical systems actually
produce sequences of numbers — like the sequence that defines a planet’s position in space
at regular intervals of time. The two merge when mathematicians look for number–theoretic
patterns hidden in those sequences.
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Global arithmetic dynamics is the study of analogues of classical Diophantine geometry in
the setting of discrete dynamical systems, while local arithmetic dynamics, also called p-adic
or non-archimedean dynamics, is an analogue of complex dynamics in which one replaces
the complex numbers C by a p-adic field such as Qp or Cp and studies chaotic behavior and
the Fatou and Julia sets.

2 p-adic Numbers

We will now define the set of p-adic numbers and introduce the basic theory. To start off,
we need to define magnitudes and distances on the rationals using the multiplicity of primes
in the factorization of numbers. This is done by the absolute value function.

The p-adic valuation

Prior to the absolute value itself, we will construct a valuation, which is a function that
relates each integer to the multiplicity of a prime in its factorization.

Definition 1. A function v : ZÑ ZY t8u is called a valuation if for all x, y P Z, we have

i. vpx, yq “ vpxq ` vpyq

ii. vpx` yq ě minpvpxq, vpyqq

iii. vp0q “ 8

Then we define the p-adic valuation:

Definition 2. Let p be a prime number. For x P Zzt0u, we define vppxq to be the unique
nonnegative integer k such that

x “ pkx1,

where x1 P Z and p - x. Also define vpp0q “ 8.

We can also think of vppxq as the exponent of p in the prime factorization of x.

Example 3.

– If p “ 3 and x “ 54, then x “ 2 ¨ 33, so vppxq “ 3.

– If p “ 5 and x “ 42, then 5 - x, so vppxq “ 0.

– If p “ 2 and x “ 40, then x “ 23 ¨ 5, so vppxq “ 3.

We can extend the p-adic valuation to the rational numbers as follows: for x P Q where
x “ a{b, define

vppxq “ vppaq ´ vppbq.

Example 4.

– We have v3
`

36
41

˘

“ v3p36q ´ v3p41q “ 2´ 0 “ 0.

– We have v7
`

11
98

˘

“ v7p11q ´ v7p98q “ 0´ 2 “ ´2.

– We have v3
`

3
27

˘

“ v3p3q ´ v3p27q “ 1´ 3 “ ´2.

From these examples, we can see that the extension of the function to all the rationals is
well-defined for equivalent fractions, and that representing integers as rational numbers does
not change the value of the function. In general, if q “ a

b
is a rational number, vp

`

a
b

˘

does
not depend on the choice of a and b.
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We are now ready to define the p-adic absolute value.

Definition 5. If x P Q, we define |x|p “ p´vppxq if x ‰ 0 and |0|p “ 0.

Example 6.

– We have |6|3 “ 3´v3p6q “ 3´1 “ 1
3
.

– We have |32|7 “ 7´v7p32q “ 70 “ 1.

– We have
ˇ

ˇ

1
40

ˇ

ˇ

5
“ 5vpp

1
40q “ 5´p´1q “ 5.

The p-adic absolute value shares some important properties with the standard absolute value.

Theorem 7. For all x, y P Q, we have

i. |x|p “ 0 ô x “ 0

ii. |xy|p “ |x|p ¨ |y|p

iii. |x` y|p ď maxp|x|p, |y|pq

iv. |x` y|p ď |x|p ` |y|p pTriangle Inequalityq

Remark. An absolute value on a field F is a map | ¨ | : F Ñ R` that satisfies properties i,
ii, and iv. An absolute value that also satisfies property iii, is said to be non-archimedean.

Proof. Let p be a prime number, and let x P Q.

i. If x ‰ 0, we have |x|p “ p´vppxq, which can never be zero.

ii. Write x “ pvppxqx1 and y “ pvppyqy1 so vppx
1q “ vppy

1q “ 0. Then

|xy|p “
ˇ

ˇ

ˇ
pvppxqx1pvppyqy1

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ
pvppxq`vppyqx1y1

ˇ

ˇ

ˇ

p

“ p´pvppxq`vppyqq

“ p´vppxqp´vppyq

“ |x|p|y|p.

iii. Without loss of generality, take |x|p ě |y|p. Then, we have that p´vppxq ě p´vppyq,
which means vppxq ď vppyq. Therefore, mintvppxq, vppyqu “ vppxq. It is easily verified
that

vppx` yq ě mintvppxq, vppyqu “ vppxq.

Therefore, p´vppx`yq ď p´vppxq, or equivalently, |x` y|p ď |x|p “ maxt|x|p, |y|pu.

iv. This follows directly from iii. as we have

|x` y|p ď max
 

|x|p, |y|p
(

ď |x|p ` |y|p

for all x, y P Q. �

A convergent sequence pxmq is characterized by the fact that its terms become (and stay)
arbitrarily close to its limit, as m Ñ 8. Due to this, however, they also get close to each
other; in fact, |xm ´ xn| can be made arbitrarily small for sufficiently large m and n. It is
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natural to ask whether the latter property, in turn, implies the existence of a limit. This
problem was first studied by Augustin-Louis Cauchy (1789–1857). Thus we shall call such
sequences Cauchy sequences. More precisely, we have the following.

Definition 8. Given an absolute value, | ¨ |, on F , we say a sequence pxkq in F is Cauchy if
for every positive real number ε ą 0 there is a positive integer N such that for all natural
numbers m,n ą N ,

|xm ´ xn| ă ε.

We say F is complete with respect to | ¨ | if every Cauchy sequence in F has a limit in F .
Further, we denote by Cp the set of all sequences in Q which are Cauchy with respect to | ¨ |p.

Example 9.

(1) The sequence panq, where an “ 1´ 2´n,

1` 1
2
, 1´ 1

4
, 1` 1

8
, 1´ 1

16
, . . .

is Cauchy with respect to the standard absolute value. It converges to 1.
(2) Let p be a prime. The sequence pbnq, where bn “ p` ¨ ¨ ¨ ` pn,

p, p` p2, p` p2 ` p3, . . .

is Cauchy in Q with respect to | ¨ |p. It does not have a limit in Q, but we will see
later that it converges to a p-adic number.

We can add and multiply Cauchy sequences. The constant sequences 0 “ p0, 0, . . . q and
1 “ p1, 1, . . . q are additive and multiplicative identities, and every Cauchy sequence pxnq has
an additive inverse p´xnq. So Cauchy sequences form a commutative ring.

Proposition 10. Under the operations pxkq ` pykq “ pxk ` ykq and pxkq ¨ pykq “ pxkykq, the
set Cp of Cauchy sequences in Q is a commutative ring with identity.

Proof. All we need to check is that if pxkq and pykq are Cauchy, then pxk ` ykq and pxkykq
are Cauchy. Suppose ε ą 0. Since x and y are Cauchy, there exists N ą 0 such that for all
m,n ą N , we have that |xm ´ xn|p ă

ε
2

and |ym ´ yn|p ă
ε
2

(just find N separately for pxkq
and pykq and take the larger value). Then, by the triangle inequality, we have

|pxm ` ymq ´ pxn ` ynq|p “ |xm ´ xn ` ym ´ yn|p

ď xm ´ xn|p ` |ym ´ yn|p

ă ε.

Thus pxk ` ykq is Cauchy. Now we show pxnqpynq is Cauchy. Let ε ą 0. Then

D B : |xn|p, |yn|p ă
B
2

for all n.

Also,

D N : m,n ą N ñ |xm ´ xn|p, |ym ´ yn|p ă
ε
B
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Then for all m,n ą N , we have

|xmym ´ xnyn|p “ |xmym ´ xmyn ` xmyn ´ xnyn|p

“ |xmpym ´ ynq ` ynpxm ´ xnq|p

ď |xmpym ´ ynq|p ` |ynpxm ´ xnq|p

ď |xm|p ¨ |ym ´ yn|p ` |yn|p ¨ |xm ´ xn|p

ă
B

2
¨
ε

B
`
B

2
¨
ε

B
“ ε.

Thus pxnqpynq is Cauchy. �

The field of p-adic numbers

An ideal I of a commutative ring R is a subset of R which is a group under addition, and
also has the property that it is closed under multiplication by any r P R, that is, for all r P R
and x P I, rx P I. An ideal of the form

pxq “ xR “ txr | r P Ru

is called a principal ideal. Note that the commutative ring R itself is a principal ideal,
R “ p1q. An ideal that is contained in no other ideal except R is called a maximal ideal.

Example 11. The set of even numbers E is an ideal of the integers. It is in fact a maximal
ideal because it we add an odd number 2n` 1 to it, we can subtract by 2n P E to get 1.

We can define the sum of two ideals as the Minkowsky sum, i.e.

I1 ` I2 “ tx1 ` x2 | x1 P I1, x2 P I2u.

We write px, yq to denote xR ` yR. Let R be a commutative ring and let I be an ideal in
R. We can form the factor group R{I whose elements are the sets

x` I “ txu ` I “ tx` y | y P Iu.

We define addition and multiplication of elements of R{I by

px` Iq ` py ` Iq “ px` yq ` I,

px` Iq ¨ py ` Iq “ pxyq ` I.

We then have the following well-known theorem:

Theorem 12. Let R be a commutative ring with identity, and let I be an ideal of R. Then
R{I is a field if and only if I is a maximal ideal.

Denote by N the set of sequences pxkq in Cp such that limkÑ8 |xk|p “ 0.

Theorem 13. The ideal N is a maximal ideal in Cp.

Proof. Let pxnq P CpzN, and let I “ ppxkq,Nq, i.e. I is the smallest ideal containing both
pxkq and N . We will show that I “ Cp.

Since limkÑ8 |xk|p ‰ 0, there exists c ą 0 and N such that

|xk|p ą c ą 0 for all k ą N.
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Thus for all k ą N we have that xk ‰ 0, so we can define the sequence pykq by

yk “

#

0 if k ă N
1
xl

if k ě N.

Now we show that pykq is Cauchy. We have

|yk`1 ´ yk|p “

ˇ

ˇ

ˇ

ˇ

1

xk`1
´

1

xk

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

xk ´ xk`1
xkxk`1

ˇ

ˇ

ˇ

ˇ

p

ď
1

c2
¨ |xk ´ xk`1|p,

for k ě N , which goes to 0 as k goes to 8. Because | ¨ |p is non-archimedian, we have that

|yj ´ yk|p “ |yj ´ yj´1 ` yj´1 ´ yj´2 ` ¨ ¨ ¨ ` yk`1 ´ yk|p

ď max |yj ´ yj´1|p, |yj´1 ´ yj´2|p, . . . |yk`1 ´ yk|p,

which goes to 0 as j, k Ñ 8. Thus pykq is Cauchy. Then

xkyk “

#

0 if k ă N

1 if k ě N,
so

p1q ´ pxkqpykq “

#

1 if k ă N

0 if k ě N
P N.

Thus p1q is the sum of an element of N Ă I plus the product of an element of I times
an element of Cp, which is an element of I, so p1q P I. Thus I “ Cp, and the proof is
complete. �

The quotient Cp{N is thus a commutative ring with identity. We define

Qp “ Cp{N.

We call Qp the field of p-adic numbers.

Note that the proof of Theorem 5 also shows the following, which we record as a lemma.

Lemma 14. A rational sequence pxkq is Cauchy with respect to | ¨ |p if and only if

|xk`1 ´ xk|p Ñ 0.

Thus Qp is the set of equivalence classes of rational sequences that are Cauchy with respect
to | ¨ |p, where two sequences are equivalent when their difference converges to 0. Consider
the rational sequence

xn “
n
ÿ

k“n0

dkp
k, dk P t0, 1, . . . , p´ 1u, dn0 ‰ 0,(2.1)

where n0 is an integer. This is a Cauchy sequence, so it makes sense to talk about its limit

x “
8
ÿ

k“n0

dkp
k.(2.2)

We define |x|p to be p´n0 . We want to show that every equivalence class contains a sequence
of the type given in (2.1) (an infinite expansion in base p).

We start with a lemma.
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Lemma 15. Let pykq P CpzN. Then the sequence p|yk|pq is eventually constant.

Proof. Since pykq R N, there exists c ą 0 and N1 such that

n ě N1 ñ |yn|p ą c

Since pykq P Cp there exists N2 such that

n ě N2 ñ |yn`1 ´ yn|p ă c

Let N “ maxpN1, N2q. For all n ě N , we have that

|yn|p “ |yn ´ yn`1 ` yn`1 ď maxp|yn ´ yn`1|p, |yn`1|pq “ |yn`1|p

|yn`1|p “ |yn`1 ´ yn ` yn ď maxp|yn`1 ´ yn|p, |yn|pq “ |yn|p,

so |yn|p “ |yn`1|p, which completes the proof. �

Then we have the following proposition:

Proposition 16. Every equivalence class of Cp contains a sequence of the type

xn “
n
ÿ

k“n0

dkp
k, dk P t0, 1, . . . , p´ 1u, dn0 ‰ 0,(:)

where n0 is an integer.

Proof. Suppose pykq P Cp. If pykq P N, then the equivalence class of pykq contains p0q, which
is of the type (:). Otherwise, let p´n0 be the value that |yk|p takes as k Ñ 8. Without loss
of generality, we can replace pykq with another sequence such that |yk| “ p´n0 for all k.
Define y1n “ ynp

´n0 , so that |y1n| “ 1. Choose a subsequence pznq of py1nq such that

|zn`1 ´ zn|p ď pn´1 for all n.

Since |zn|p “ 1, we can find d10, d
1
1, . . . , d

1
n P t0, 1, . . . , p´ 1u such that

x1n “
n
ÿ

k“0

d1kp
n

has the property that zn ” x1n pmod pnq. Since |zn`1 ´ zn|p ď pn´1, we have

zn`1 ” zn pmod pnq,

so we can find d1n`1 such that zn`1 ” x1n`1 pmod pn`1q. Continue like this to get a sequence
px1nq of the type (:) that is equivalent to pynq and pznq. �

The p-adic integers

Thus, we can think of Qp as the set of base p expansions that can extend infinitely to the
left and have finitely many digits to the right of the decimal point.
Now we define

Zp “ tx P Qp | |x|p ď 1u.

We call Zp the set of p-adic integers. Then we can think of Zp as the closed unit disk in Qp.
Then Zp is also a commutative ring with identity. We can think of the p-adic integers as
infinite expansions (to the left) in base p that have no decimal places.
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Example 17. The sequence in part (2) of Example 8 converges to the p-adic number given
by n0 “ 1 and dk “ 1 for all k ě 1. We can think of this p-adic number as the infinite
expansion in base p: ¨ ¨ ¨ 111p. This number is also a p-adic integer.

Consider the set
pZp “ tx P Qp | |x|p ă 1u.

This is an ideal of Zp. Consider the set

ZpzpZp “ tx P Qp | |x|p “ 1u.

This consists of all the invertible elements of Zp. Then any ideal that properly contains pZp
contains an invertible element, which means it contains 1, so it is Zp. Thus pZp is a maximal
ideal.

Lemma 18. The field Zp{pZp has p elements.

Proof. The elements of Zp correspond to the expressions (2.2) with n0 ě 0. Two such
sequences are equivalent iff they only differ in the first digit d0. This gives p different
elements of Zp{pZp, corresponding to the different values of d0. �

Then we have Hensel’s Lemma, a useful lemma we use in a later part of the paper.

Lemma 19 (Hensel’s Lemma). Let fpxq be a polynomial in Zprxs. If there exist α1 P Zp
such that

fpα1q ” 0 pmod pq and f 1pα1q ı 0 pmod pq

then there exists a unique p-adic integer α such that

fpαq “ 0

and α ” α1 pmod pq.

Proof. We will construct a Cauchy sequence of p-adic integers α1, α2, . . . such that for all
n ě 1 we have that

fpαnq ” 0 pmod pnq and αn`1 ” αn pmod pnq.

This sequence is Cauchy because |αn`1 ´ αn|p ď p´n. If α is the limit of this sequence, then
note that fpαq “ 0 and α ” α1 pmod pq. Thus we just need to show such a sequence exists.
By assumption, α1 exists. Now we find α2. We have

α2 “ α1 ` d1p

for some d1. Then
fpα2q “ fpα1q ` f

1
pα1qd1p`Opp

2
q,

where Opp2q denotes some element of p2Zp. Thus

d1pf
1
pα1q ` fpα1q ” 0 pmod p2q.

Note that fpα1q ” 0 pmod pq, so fpα1q “ pβ for some β P Zp. Dividing by p, we get that

d1f
1
pα1q ` β ” 0 pmod pq,

so
d1 ” ´βf

1
pα1q

´1
pmod pq,

which is defined because f 1pα1q ‰ 0 pmod pq. Similar calculations gives a3 from a2, a4 from
a3, and so on. �
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3 Main Application

Now we are ready to look at our main application. In this application, we look at the function
that rotates a complex number by a specific angle.

Definition 20. A planar rotation is a map R2 Ñ R2 given by
„

x
y



ÞÑ

„

cosp2πvq ´ sinp2πvq
sinp2πvq cosp2πvq

 „

x
y



,

which describes a rotation by an angle of 2πv about the origin. We say that v is the rotation
number of this rotation.

We will investigate the case when v is irrational (if v is rational, then this map is periodic).

Let

A “

„

λ ´1
1 0



λ “ 2 cosp2πvq

Suppose v ‰ 0, 1
2
, so λ is not an integer (these are trivial cases that do not interest us). If

C “

„

1 ´ cosp2πvq
0 sinp2πvq



,

and J is the matrix corresponding to the planar rotation with rotation number v, we can
check that A “ CJC´1, i.e. J and A are conjugate. This means that the dynamics of A and
J have the same orbit structure (so if we understand the dynamics of A we understand the
dynamics of J and vice versa). The invariant sets of A are the ellipses

x2 ´ λxy ` y2 “ c.

We have the following result.

Lemma 21 (Niven’s Theorem). If λ is rational (and not equal to an integer), then v is
irrational.

Proof. We omit the proof as it is quite complicated. �

Now, we perturb the linear mapping defined by A by discretizing the space. Consider the
lattice map

Ψ: Z2
Ñ Z2

px, yq ÞÑ ptλxu´ y, xq λ “ 2 cosp2πvq.

Then Ψ is just the action of the matrix A but with rounding. Note that the mapping

px, yq ÞÑ py, tλyu´ xq

is an inverse of Ψ, so Ψ is invertible. If there are a finite number of points in the orbit of
Ψ, then the orbit must be periodic. If there are an infinite number of points, the orbit must
spiral off to infinity because there are finitely many lattice points within any given radius
from the origin. Thus the orbits of Ψ are either periodic or spiral off to infinity.

The following image shows a portion of the periodic orbit of Ψ when λ “ 1
2
. Here is a link

to a Google Sheets that generates a graph of the periodic orbit of Ψ for different values of λ
and starting points.

https://docs.google.com/spreadsheets/d/1hFba75ZXGijH-oQGhAME0plHCyuNitpnIYb_ySy55D4/edit#gid=0
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Figure 1: A portion of a periodic orbit of the map Ψ, for λ “ 1
2 . The period is 696.

We will consider the family of parameter values

λ “
q

pn
n ě 1, |q| ă 2pn, gcdpq, pq “ 1.

Since λ is rational, it follows that the rotation number v is irrational. Consider the polynomial
fpxq “ x2 ´ qx` p2n. Then

fpxq ” xpx´ qq pmod p2nq, f 1pxq “ 2x´ q,

and we have

fp0q “ fpqq ” 0 pmod p2nq,

f 1p0q ” ´q pmod p2nq,

f 1pqq ” q pmod p2nq.

Since p and q are relatively prime, it follows from Hensel’s lemma that f has two distinct
roots θ and θ in Zp such that

θ ” 0 pmod p2nq and θ ” q pmod p2nq.

Lemma 22. We have |θ|p “
1
p2n

and |θ|p “ 1.

Proof. Since θ ” 0 pmod p2nq, we have p2n | θ, which implies |θ|p ď
1
p2n

. Suppose, for the

sake of contradiction, that |θ|p ă
1
p2n

. This means that p2n`1 | θ, and it follows that

p2n`1 | θ2 ` qθ “ fpθq ´ p2n “ ´p2n,

which is obviously false. Thus |θ|p “
1
p2n

. Then θ ” q pmod p2nq implies θ ” q pmod pq.

Since gcdpp, qq “ 1, it follows that p - q, so |q|p “ 1. It follows that |θ|p “ 1. �
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Then it follows that θ
pn
P pnZp. Thus we can define the map

L : Z2
Ñ Zp, px, yq ÞÑ x´ y ¨

θ

pn
.

Then L is injective. Let L be the image of Z2 under L, i.e. L “ LpZ2q Ă Zp. Then L is an
additive subgroup of Zp. Define the map

Ψ˚ : LÑ L, Ψ˚
“ L ˝Ψ ˝ L´1.

Then Ψ˚ is conjugate to Ψ, which essentially means that if we understand the dynamics of
Ψ˚ we understand the dynamics of Ψ and vice versa. To characterize the map Ψ˚, we first
define the p-adic shift mapping.

Definition 23. The p-adic shift

σ : Zp Ñ Zp
is defined as follows. Given a p-adic integer

z “ b0 ` b1p` b2p
2
` ¨ ¨ ¨ ,

where the bi P t0, 1, . . . , p´ 1u, we let

σpzq “ b1 ` b2p` b3p
2
` ¨ ¨ ¨ .

We immediately see that if σk denotes the k-fold iterate of σ, then we have that

σkpzq “ bk ` bk`1p` bk`2p
2
` ¨ ¨ ¨ .

Moreover, for x P Z, it is the case that

σkpxq “

Z

x

pk

^

.

One of the most basic properties of the shift is that it is continuous as a function of Zp.
Indeed, if |x´ y|p ă 1{pk`1, it is not hard to see that |Spxq ´ Spyq|p ă 1{pk.
Finally, given x P Z, we define the integer cpxq by

qx´ cpxq

pn
“

Z

qx

pn

^

.

Definition 24. Let Γ : S Ñ Zp be a map from a subset S of Zp to Zp. We say Γ can be
extended continuously to Zp if we can expand the domain of Γ to take in all values of Zp
such that Γ is continuous, i.e. for any z0 P Zp and ∆ P Qą0, there exists ε P Qą0 such that
for all z P Zp with |z ´ z0|p ď ε, we have |Γpzq ´ Γpz0q|p ď ∆.

Now we present our main result:

Theorem 25. We can take the map Ψ˚ and extend it continuously so that it is defined for
all values in Zp, and is given by

Ψ˚ : Zp Ñ Zp z ÞÑ σnpθzq.

Proof. Because θ and θ are the roots of fpzq, we have that

θ ` θ “ q and θθ “ p2n.
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Let z “ Lpx, yq “ x´ y θ
pn

. Then

Φ˚pzq “ L

ˆZ

qx

pn

^

´ y, x

˙

“

Z

qx

pn

^

´ y ´ x
θ

pn

“
1

pn
pxpq ´ θq ´ pny ´ cpxqq

“
1

pn
pxθ ´

θθ

pn
y ´ cpxqq

“
1

pn
pθz ´ cpxqq.

Note that y θ
pn
P pnZp since θ

pn
. Thus

qx ” qz ” θz pmod pnq.

Thus
Ψ˚
pzq “ σnpθzq.

If zpkq Ñ z is a Cauchy sequence in L, then so is σnpθzpkqq, and since L is dense in Zp, we
can extend Ψ˚ to the whole of Zp. �

This shows that in essence, the dynamics induced by the round-off errors can be explained
quite nicely using p-adic numbers and the p-adic shift!
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