
PRIMALITY TESTING AND FACTORING ALGORITHMS

SANCHAY DEVNATH

1. Introduction

The most common way to do a primality test of a positive integer n, deter-
mine whether n is prime, is to see if z|n given prime z ∈ (1,

√
n)—if false the

n is prime. If true, all the values of z for which z|n are a part of the prime
factorization of n. Here is an easy demonstration of this. Let us say n = 91
and we need to determine whether n is prime, and if it is a composite number
what is its prime factorization.

First we find
√
n: √

91 = 9.53939201

We then floor this number because any number greater than it would be re-
dundant for our needs

≈ 9

Now we check if z|91 for z ∈ (1,
√
91) and is prime:

2 → 2 ∤ 91

3 → 3 ∤ 91
5 → 5 ∤ 91
7 → 7|91

Now that we have proved that 91 is composite we must find its prime factor-
ization:

91÷ 7 = 13

Since 13 is prime, the prime factorization of 91 is:

91 = 7 · 13
Although this technique is deterministic, mostly determines the primality of
a number with complete accuracy, it becomes futile when dealing with bigger
numbers. For example, determine whether 1348956739 is prime. If we utilize
our previous method, we would first determine

√
n.

√
1348956739 = 36728.1464

≈ 36728
1



2 SANCHAY DEVNATH

Obviously, it is not optimal to check the divisibility between every single prime
in (1, 36728) with 1348956739. Furthermore, we will also need to determine if
the numbers in (1, 36728) are prime themselves.

We will discuss the nuances of various primality tests like this in this pa-
per, from those that always provide the right answer to those that are not so
accurate but far more efficient.

2. Fermat’s Primality Test

Fermat’s Test was created by Pierre De Fermat in 1640. It is a deterministic
test that revolves around the expression:

ap − a

In this formula, p is the number whose primarlity we seek to determine and
a is any integer in (1, p). Fermat’s Test states that if for all values of a, the
expression ap − a is a multiple of p then p is prime.
Proof. This Primality test is derived from Fermat’s other theorem called
Fermat’s little theorem, which states:

ap ≡ a(modp)

is true for any prime (p) and any integer (a) in (1,p). This is nothing but a
different way of saying p|(ap − a).
Example. Determine the primality of 5.

2 → 25 − 2 = 32− 2 = 30 → 5|30
3 → 35 − 3 = 243− 3 = 240 → 5|240

4 → 45 − 4 = 1024− 4 = 1020 → 5|1020
Since all integers in (1, 5) output a multiple of 5 when plugged into the formula,
5 is obviously prime. However, although Fermat’s test is deterministic (like
the traditional square root method) it is not fully accurate in computing the
primality of larger numbers (specifically past 511).

3. AKS Test

The AKS primality test (also known as Agrawal–Kayal–Saxena primality
test and cyclotomic AKS test) was the first unconditional deterministic pri-
mality algorithm published by computer scientists: Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena at IIT (Indian Institute of Technology Kanpur) in
2002. The main formula of this test is:

(x+ 1)p − (xp + 1)

where x is variable and p is the number whose primality needs to be deter-
mined. If the coefficients of the simplified expression of this formula are all



PRIMALITY TESTING AND FACTORING ALGORITHMS 3

multiples of p, then p is prime.
Example 1. determine the primality of 3.

(x+ 1)3 − (x3 + 1)

x3 + 3x2 + 3x+ 1− x3 − 1

3x2 + 3x

3 is obviously a multiple of 3, making 3 prime. Example 2. determine the
primality of 4.

(x+ 1)4 − (x4 + 1)

x4 + 4x3 + 6x2 + 4x+ 1− x4 − 1

4x3 + 6x2 + 4x

In this example the coefficients are: 6, and 4. Obviously 6 is not a multiple of
4, making 4 composite.

Proof. Let us first simplify the formula assuming n is prime using the bino-
mial theorem.

(x+ 1)n − (xn + 1)

=
n∑

r=0

(
n

r

)
xr − (xn − 1)

=
n−1∑
r=1

(
n

r

)
xr

Since we are only concerned with whether n divides the coefficients, we can
further simplify this expression into:

n

(
n

r

)
r ∈ [1, 2, 3...n− 1]

Further simplified we get this:(
n

r

)
=

n!

r!(n− r)!

=
n(n− 1)(n− 2)...(n− r)!

r!(n− r)!

=
n(n− 1)(n− 2)...(n− r + 1)

r!

we can now group (n−1)(n−2)...(n−r+1)
r!

into θ giving us:

n · θ



4 SANCHAY DEVNATH

Since this represents the sum of all the coefficients in the original formula, we
can use the distributive property to confirm that n is a factor of each of the co-
efficients. Keep in mind that this would not be possible if n was composite be-
cause then it would be factored out by some r value because r ∈ [1, 2, 3...n−1].

4. Mills Prime Number Generator

Now we will take a different approach towards primes by discussing how we
can generate or, with a big enough computer, create one. In 1947, William
Harold Mills proved the existence of A based on results of Guido Hoheisel and
Albert Ingham on the prime gaps. Its value is approximately 1.30637788386308
06904686144926... (sequence A051021 in the OEIS). This constant is know as
Mills’ constant (µ). Mills the following expression utilizing this constant:

⌊µ3n⌋
Plugging in any positive integer for n will give us a prime number.

n = 1 → ⌊µ3⌋ = 2

n = 2 → ⌊µ9⌋ = 11

n = 3 → ⌊µ27⌋ = 1361

As you can see not all prime numbers can be produced by this expression,
instead a specific sequence of numbers (known as Mills primes) are produced.
The sequence looks something like this:

2, 11, 1361, 2521008887, 16022236204009818131831320183,

411310114921510480003052953791595317048613962353975

9933135949994882770404074832568499...

Clearly the primes escalate into very large numbers. These numbers are often
used in cryptography because it becomes harder for a person to decode a
private key as the primes used are larger.

5. Factoring Algorithms

We will now discuss the various different ways to find the prime factorization
of a number. The ability to quickly determine the prime factorization of a num-
ber is one of the most researched areas of study in modern times—specifically
for its relation to RSA cryptography. Cryptography relies on having the prime
factorization of huge numbers consisting of large primes as its factors. The
difficulty in determining the prime factorization of such large numbers is the
reason for the rise in cryptography.
The most basic factorization algorithms is known as Direct Search Factoriza-
tion. In this method we check every integer if r|n for r ∈ (1,

√
n) is a factor



PRIMALITY TESTING AND FACTORING ALGORITHMS 5

of n, n being the number whose prime factorization we must determine, and
then proceed to factor. This is the method discussed in the Introduction of
this paper.

6. Shor’s Algorithm

In 1994, Peter Shor had created one of the most profound factoring algo-
rithms of modern times. This algorithm enabled factorization in the polyno-
mial time with the help of quantum computers—in contrast to the exponential
time that was commonly accepted. This reduction in time needed for factor-
ization enabled experts to enhance cryptography.
Theorem. If N is semi-prime, a product of two different primes, and x is an
integer that satisfies the following:

x2 ≡ 1(modN)

x ̸≡ 1(modN) and x ̸≡ −1(modN)

Then gcd(x− 1, N) and gcd(x+ 1, N) are non-trivial factors of N.
This is the classical part of the algorithm, for which one could use classical
computers to factor N .
Proof. From x2 ≡ 1(modN) we can get:

N |(x2 − 1)

From which we get:
N |(x+ 1)(x− 1)

Therefore if:
gcd(x− 1, n) = 1

Then:
N |(x+ 1)

However, x ̸≡ 1(modN) and x ̸≡ −1(modN). This means both gcd(x −
1, n) > 1 and gcd(x+ 1, n) > 1, and are both nontrivial.
Example. Find the prime factorization of 15.
We first guess an integer, x, that satisfies the prerequisites. The lowest number
that does so is:

x = 4

The nontrivial factors of 15 are:

gcd(4− 1, 15) and gcd(4 + 1, 15)

= gcd(3, 15) and gcd(5, 15)

Which are 3, and 5.
The ability to identify the nontrivial factors of a semi prime contributed to
the O(log(N)) time complexity of Shor’s Algorithm. This was significantly
faster than the previous algorithms that ran on O(log(Nk). This advanced



6 SANCHAY DEVNATH

cryptography by enabling computers to generate bigger numbers, while being
able to recognize the factorization of those large numbers.

References

[1]Goswami, Debarate, director. Breaking Classical Codesnbsp; Basics of
Shor’s Algorithm. YouTube, YouTube, 6 Feb. 2017, https://www.youtube.com
. Accessed 25 Dec. 2023.
[2]“Primality Test.” Wikipedia, Wikimedia Foundation, 19 Nov. 2023, en.wikipedi
a.org/wiki/Primalitytest.
[3]“Primality Test.” FromWolframMathWorld, mathworld.wolfram.com/Primality
Test
[4]Woo, Eddie, director. Primality (2 of 2: AKS Test). YouTube, YouTube,
8 Nov. 2014, https://www.youtube.com/watch?v=D7AHbyAlgIAamp;t=1s.
Accessed 24 Dec. 2023.


	1. Introduction
	2. Fermat's Primality Test
	3. AKS Test
	4. Mills Prime Number Generator
	5. Factoring Algorithms
	6. Shor's Algorithm
	References

