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1. Topic Summary

We will first introduce the claim of the Mordell-Weil theorem and explain its significance
in the study of elliptic curves, before building up to the proof of the result. Our claim of the
theorem will focus on the case of rational points on elliptic curves rather than K−rational
points on algebraic varieties for simplicity; the only knowledge outside of Euler Circle that
may be needed in reading the bulk of this paper is basic knowledge on projective spaces,
which we refer to [4] for; however, additional knowledge is required to understand the proof
of the Weak Mordell-Weil Theorem.

2. The Mordell-Weil Theorem

In class, we discussed the structure of elliptic curves through the lens of its group law.
The Mordell-Weil Theorem serves as a vital foundation in the study of elliptic curves, as we
understand the structure of finitely generated abelian groups very well.

Theorem 2.1 (The Mordell-Weil Theorem). The group of rational points on an elliptic
curve is a finitely generated abelian group.

In solving problems about elliptic curves, it is useful to know the properties of finitely
generated-ness because it both allows us to interpret our elliptic curve group as (isomorphic
to) the direct product of a finite number of cyclic groups (by the Fundamental Theorem of
Finitely Generated Abelian Groups).

To prove the Mordell-Weil Theorem traditionally, we first prove the ”Weak Mordell-Weil
Theorem” stating that the quotient group of an elliptic curve with a multiple of said curve
is finite. Next, we define a condition for an abelian group G to be finitely generated (given
G/mG is finite) through the usage of height functions. We finally construct a height function
on our elliptic curve, which implies the Mordell-Weil Theorem.

3. The Weak Mordell-Weil Theorem

We will provide the groundworks to understand the intuitive behind the Weak Mordell-
Weil theorem, but refer to [1] or [3] for a complete proof.

Theorem 3.1 (The Weak Mordell-Weil Theorem). For any m > 2, the quotient group
E(Q)/mE(Q) is finite.
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Note if we assume the Mordell-Weil Theorem is true, the weak theorem follows directly
from observing the generators of the elliptic curve; if there are n generators of E, there are
at most mn points in E/mE, which is why the ”weak” labelling is appropriate.

The proof of this theorem requires significant machinery outside of what we covered in
class, so our sketch will emphasize the ideas implemented in its proof while handwaving
through its more technical parts, though advanced knowledge (Galois cohomology) is still
required to understand the outline of our proof. We refer to [2] for curious readers in learning
more background on the proof, but for those less patient it may be worth moving directly
to the next section of our proof. Here, we will let K be an arbitary number field instead of
focusing solely on Q.
We cite the following theorem from Kummer Theory without proof from [2]:

Theorem 3.2. Homc(GK , µn) = K∗/(K∗)n, where K is a number field, GK = Gal(K/K),
µn is the group of the nth roots of unity in K, and K∗ is the dual of K (as Q vector spaces).

See (1) pg 1 of [2]

This is implemented in the proof of the Weak Mordell-Weil Theorem as a part of a long
exact sequence used to obtain the exact sequence presented later in this paper.

Now, we define Selmer and Tate-Shafarevich Groups, which define an exact sequence later
on that is used to prove our theorem.

Definition 3.3 (Selmer Group). The Selmer Group, denoted S(n)(E/K) is defined by
S(n)(E/K) = ker(Hom(GK , E [n]) →

∏
u Hom(GKu , E)

Definition 3.4 (Tate-Shafarevich Group). The Tate-Shafarevich Group, denoted III(E/K)
is defined by III(E/K) = ker(Hom(GK , E) →

∏
uHom(GKu , E)

Note that intuitively, if E [n] ⊆ E [K], that the Selmer Group embeds into the Tate-
Shafarevich Group; the significance of these groups are solely in forming an exact sequence.

In fact, proving the Selmer Group is finite is an important step in proving the Weak
Mordell-Weil Theorem, implementing the result from Kummer Theory by interpreting ele-
ments of Hom(GK , E [n]) as elements of K∗/(K∗)n, allowing us to translate the problem into
one solvable using the tools of class field theory, which we cannot come close to covering in
this paper. We further refer to [2] for a more in depth explanation of this result.

The reason proving the Selmer Group is finite is important because we have the following
exact sequence of cohomology, again cited without proof from [2]:

0 → E(K) → nE(K) → S(n)(E/K) → III(E/K) [n] → 0

This implies E(K)/nE(K) embeds into the finite Selmer group and is thus finite as well;
however this relies on the elements of E [n] being in K for our sequence to be well-defined.
To remedy this, we can find a finite Galois extension L of K such that E [m] ⊆ E(L),
implying E(L)/mE(L) is finite. Fortunately, the finiteness of E(K)/mE(K) follows from
E(L)/mE(L) being finite (Lemma 3.3, [1]), which finishes the proof.
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4. Descent Argument

Finally, we will move to the main emphasis of the paper: proving the Mordell-Weil theorem
using the weak Mordell-Weil Theorem through a descent argument. We start by defining
a height function and proving that any abelian group A with corresponding finite quotient
group A/mA and height function h, can be generated by finitely many elements by tracking
h. Thus, it is sufficient to prove that there exists a height function that is well defined on
elliptic curves over the rationals, which we do to finish our proof.

For fun, we first introduce the following problem with proof, which can be solved by
using an elementary descent argument; the proof of the Descent Theorem (Thrm 4.2) is very
similar conceptually, albeit more technical.

Example (IMO 1988 Problem 6). For positive integers a and b such that ab+1|a2+ b2, show

that a2+b2

ab+1
is a perfect square

To prove this problem, we set a2+b2

ab+1
= k for fixed constant k and note that a2+b2−abk−k =

0. Assume for the sake of contradiction that a+ b is minimal and a ≥ b. This is a quadratic

in a with solutions a = bk±
√
b2k2+4k−4b2

2
; when a > b, a is equal to the larger of these

solutions, which is an integer, however, a12+b2

a1b+1
= k as well, where a1 is the lesser solution.

As a1 + b < a + b, we have a contradiction if a1 is also positive. Thus, a1 = 0 (as if it was

negative, a12+b2

a1b+1
would be either negative or undefined), so a12+b2

a1b+1
= b2 is a perfect square.

We now introduce the definition of a height function taken from [1]:

Definition 4.1 (Height Function (Yu)). Let A be an abelian group. A height function is a
map h : A → R satisfying the following three properties:

(1) For each Q ∈ A, there is a constant C1(A,Q) depending on A and Q, such that h(P+Q) ≤
2h(P ) + C1 for any P ∈ A.

(2) There is an integer m ≥ 2 and a constant C2(A) only depending on A, such that h(mP ) ≥
m2h(P )− C2

(3) For every constant C3, the set {P ∈ A : h(P ) ≤ C3} is finite (this implies h is non-negative
except at finitely many points).

Although the conditions for a height function may seem relatively arbitrary, they are
chosen to be general to allow us to construct one on elliptic curves (and general algebraic
varieties), yet precise enough to allow for the following Descent Theorem to hold, allowing
us to construct (finitely many) generators for our abelian group.

Theorem 4.2 (Descent Theorem (Yu)). If A is an abelian group such that A/kA is a finite
group for some positive integer k, if there exists height function h : A → R (such that m = k
in the second condition of a height function), then A is finitely generated.
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Proof. Let A/mA = {a1, a2, · · · ar}, and let P0 ∈ A. For 1 ≤ k ≤ n, let Pk = mPk+1 + aik .
Then, note that h(Pj) ≤ 1/m2(C2+h(mPj)) = 1/m2(C2+h(Pj−1− aij)) by property 2 of

a height function, 1/m2(C2+h(Pj−1− aij)) ≤ 1/m2(C1+C2+2h(Pj−1) ≤ h(Pj−1)/2+C by
property 1 of a height function and using the fact m ≥ 2 (where C is a constant depending
on A and the elements of A/mA). Now, note that P0 can be represented as the linear
combination of Pn and elements of A/mA. For significantly large n, note 1

2n
h(P0) < 1, which

implies h(Pn) ≤ 1+2C, as otherwise we could reverse our descent (assuming h(Pn) > 1+2C)
to find the contradiction that h(P0) > 1. As C is a constant, by property 3 of a height
function we can note there exists only finitely many potential Pn; thus as we can express any
point P0 as a linear combination of the finitely many elements of A/mA and finitely many
options for Pn, A must be finitely generated. ■

Intuitively, this theorem allows us to construct generators of an abelian group G with
finite G/mG given the existence of the aforementioned height function.

Example. Let G be the group Z2×Z/2Z. We know that G is finitely generated of course as it
is the direct product of finitely many finitely generated groups, but assuming we do not, we
can define the function h(x, y, z) = x2+y2, where (x, y, z) ∈ Z2×Z/2Z. It is straightforward
to then verify that h satisfies the requirements of a height function (say with m = 2), and
thus as (Z2 × Z/2Z/2Z2 × Z/2Z) ∼= (Z/2Z)3 is finite, Z2 × Z/2Z is finitely generated.

Using the Descent Theorem and Weak Mordell-Weil theorem, it is sufficient to construct
a height function on E(Q). We first define the height and logarithmic height (of a function)
on Q, then move to showing the logarithmic height satisfies the requirements of a height
function.

Definition 4.3 (Rational Height). Let x = [x0 : x1 · · · : xn] ∈ Pn(Q), where each xi ∈ Z and
gcd(x0, x1, · · · , xn) = 1. The height of x, H(x) = max0≤i≤n |xi|.

We now define hf , which we will show is a height function on E(Q):

Definition 4.4 (Logarithmic Height). For some non-constant function f : E → P, let
hf (P ) = log(H(f(P ))). In this paper, we assume f((x1, y1)) = x′ for (x1, y1) ∈ E(Q), and
x′ = [a : b], where a/b = x, where a and b are relatively prime integers, and b is positive.

The following results can be generalized for any hf , but for proving the Mordell-Weil
theorem we only need to know the result when f(P ) yields the x-coordinate of P ∈ E(Q).
Note that the way we have defined x′, H(x′) ≥ 1 so hf must be non-negative.
We take without proof the following theorem, which can be found as Theorem 6.2 of

Chapter 8 of [3] (taken from [1]).

Theorem 4.5 (Descent Lemma). For all P,Q ∈ E(Q), hf (P +Q)+hf (P −Q) = 2hf (P )+
2hf (Q) +O(1), where the constant only depends on elliptic curve E and f .

This theorem allows us to interpret the properties of hf through a functional equation that
has nice properties that are similar (though not necessarily the same) as a linear function.

We finally move on to proving hf satisfies the conditions of a height function:

Corollary 4.6. hf satisfies the first and second conditions of a height function
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Proof. For the first condition, note that hf (P +Q) ≤ 2hf (P )+2hf (Q)+O(1) = 2hf (P )+C1

directly from the Descent Lemma, and that hf is always non-negative.
For the second condition, we set m = 2 and note that by setting P = Q in the descent

lemma that hf (2P ) = 4hf (P ) + O(1) = 4hf (P ) + C2 → hf (2P ) ≥ 4hf (P ) + C2 which is
sufficient. ■

Theorem 4.7 (Condition 3). For any constant C, the set P ∈ P(Q) : H(P ) ≤ C contains
finitely many points

Proof. Assume without loss of generality C is a positive integer. Note that for x ∈ P(Q) with
normalized coordinates [x0 : x1], that H(x) = max{|x0|, |x1|}. When H(x) ≤ C, we must
have |x0| ≤ C and |x1| ≤ C. As x0 and x1 must be integers, there are at most 2C+1 possible
values of x0 and x1, and thus at most (2C+1)2 possible x = [x0 : x1] when normalized, which
is finite. ■

hf satisfies the conditions of a height function (withm = 2) on E(Q), thus, as E(Q)/2E(Q)
is finite, E(Q) is finitely generated, proving the Mordell-Weil Theorem.

Remark 4.8. Although here we only proved the Mordell-Weil Theorem over elliptic curves
and Q, the descent argument works perfectly fine over general number fields and algebraic
varieties, albeit with a couple more steps, which we again refer to [1] for.
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