
IDEAL CLASS GROUPS - AN INTRODUCTION

ROLAND A.

Abstract. In this expository paper, we introduce Ideal Class Groups, the context in which
they arise, and the light they shed on number theory questions. We will see that the order
of the finite group of ideal classes is the class number of a ring of integers, a concept that
we have seen in class through the lens of quadratic forms. The key powerful idea captured
by the class number is that it measures how far from being a unique factorization domain
(UFD) a ring of integers is. A trivial ideal class group of order 1 corresponds to a UFD,
whereas higher class numbers correspond to rings in which unique factorization of integers
into primes (up to units) breaks down. A key step forward in number theory occurred in
the late 19th century when Kummer and Dedekind introduced the concept of ideals. In non-
UFD rings where unique factorization is not satisfied for ring elements, it can be restored
but at the level of new objects called ideals.

1. Introduction and Motivation

Unique factorization is a key premise that enables the familiar construction of a multi-
plicative theory of numbers, i.e., how numbers are constructed from primes and units. This
is most commonly exhibited by the Fundamental Theorem of Arithmetic for integers in Z.

However, answering questions about representation of integers by algebraic expressions, such
as which prime integer p ∈ N can be represented as p = x2 + 5y2, with x, y ∈ Z, leads us to
work in rings or fields that are extensions of the integers, e.g., in Z[

√
−5] in this example.

This is the smallest ring containing the integers and
√
−5.

Working in this ring, unexpected multiplicative behaviors arise, with respect to our fa-
miliarity with arithmetic in Z. These are due to the fact that prime factorization is not
unique. Indeed, it is easy to see that in Z[

√
−5], we have:

(1.1) 6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5).

While there are similar occurrences in Z, such as with:

(1.2) 12 = 3 · 4 = 2 · 6,

things become unambiguous when we restrict ourselves to factorizations into prime integers
up to units, i.e., when we only consider factorizations of the form:

(1.3) 12 = 22 · 3,
1
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and

(1.4) − 12 = (−1) · 22 · 3.

It turns out that, after we have defined primes and units in Z[
√
−5], the elements 2, 3,

1 +
√
−5 and 1−

√
−5 are all primes. Therefore, factorization into primes and units is still

not unique in that ring, and that is really the crucial difference with rings that are unique
factorization domains such as Z.

This hurdle has led to the development of a concept of ideal numbers, now commonly called
ideals, which are abstract algebraic structures within rings that can restore unique factor-
ization into primes, except that the primes in question are not prime elements of the ring
but prime ideals.

The theory of ideals, and especially ideal class groups which we will introduce in this paper,
provides insights into how far from being a unique factorization domain a given ring is. This
will be quantified with a specific number called the class number, and it corresponds to the
order of a multiplicative group that can be defined on equivalence classes of ideals within
the ring.

In section 2 of this paper, we recall basic notions relative to rings and fields, and we in-
troduce the concept of ideals. Section 3 focuses on operations and arithmetic on ideals. We
then get to the core of our subject in section 4 where an equivalence relation and equivalence
classes are defined on ideals of rings of integers, from which a group structure and its order
will emerge: the ideal class group and the class number. Section 5 wraps up the paper with
examples where we highlight the difference between unique factorization domains, whose
class number is 1, and rings where unique factorization breaks down for ring elements, but
can be restored for ideals of such non-UFD rings.

We note the following trade-off that we have chosen to make in this paper: some results
from algebraic number theory are accepted as fact, and referenced as arguments in some
proofs of propositions in the paper. A longer version of this paper would have dedicated
a section to cover these elements of algebraic number theory, and this would have made
the paper much more self-contained and with explicit proofs of all results. However, this
would have come at the cost of nearly doubling the length of the paper, and with the risk of
introducing too many concepts and proofs that could distract from the focus remaining on
ideal class groups and class numbers.

2. Rings, Integral Domains, Ideals, and Fields

In this section, we cover several concepts of abstract algebra that will be assumed in the
later sections of this paper. For each subsection below, readers already familiar with the
concepts under the subsection title can skip the corresponding section. We assume readers
are already familiar with necessary background in group theory.

Definition 2.1 (Ring). A ring (R, +, ·) is a non-empty set with two binary operations,
which we refer to as addition and multiplication, respectively, satisfying the following prop-
erties:
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• (R, +) is an Abelian group with the addition operation. Its identity is designated as
0.
• The multiplication operation is associative.
• The multiplication operation is distributive over the addition, i.e., for all x, y, z ∈ R,

we have x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x.

Notation. We typically elide the · multiplication symbol when writing multiplicative ex-
pressions on elements of a ring.

Definition 2.2 (Commutative Ring). A ring is said to be commutative if the multiplication
operation is also commutative.

Definition 2.3 (Unitary Ring). A ring R is said to be unitary or also a ring with one (”ring
with 1”), if the multiplication operation has an identity element, which will be designated
by 1R or just 1 when the context is clear.

Going forward, we only consider rings that are commutative and unitary, as this will keep
us focused on the scope relevant to our number theory area of interest.

Definition 2.4 (Integral Domain). A ring is an integral domain if it has no non-zero divisors,
i.e., if it satisfies the property

(2.1) a, b ∈ R and ab = 0 =⇒ a = 0 or b = 0.

Definition 2.5 (Ring Units). An element x of a commutative and unitary ring R is said to
be a unit if it has a multiplicative inverse in the ring, i.e., if there exists an element y in R
such that xy = yx = 1.

Example. We illustrate the definitions above with a few familiar examples of rings.

• The integers with usual addition and multiplication form a ring (Z, +, ·), with the
usual 0 and 1. The set of units in (Z, +, ·) is {1, −1}. This ring is an integral
domain.
• The integers modulo an integer n, Z/nZ, also form a ring with the modular addition

and multiplication operations.
• If n is composite, then Z/nZ is not an integral domain. As an example, we have

2 · 3 ≡ 0 (mod 6), despite having both 2 6≡ 0 (mod 6) and 3 6≡ 0 (mod 6).
• If n = p is prime, then Z/pZ is an integral domain. All non-zero elements in this

ring are units.
• An example of non-commutative ring isMn(Z), the set of n×n matrices with integer

entries.

Proposition 2.6 (Group of Ring Units). The set of units of a ring R is a group under the
multiplication operation. We designate this group of units by R×.

Proof. The proof is pretty straightforward as the set is non-empty and contains a mul-
tiplicative identity which is the element 1R from the unitary ring R. Associativity, and
commutativity in our area of focus, are inherited from the ring’s operations. Closure under
inverses is evident from the definition of a unit having a multplicative inverse in the ring.

We just show closure under multiplication: for u1, u2 in the set of units, there exist v1, v2 such
that u1v1 = v1u11 and u2v2 = v2u2 = 1, and we have (u1u2)(v2v1) = u1(u2v2)v1 = u1v1 = 1,
which shows that the product u1u2 also has a multiplicative inverse in the ring. �
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Definition 2.7 (Subring). A non-empty subset of a ring R is a subring of R that is a
ring under the same operations as R and has the same additive and multiplicative identity
elements as R.

To mirror the quotient structure of a group by a normal subgroup, we introduce the
concept of ideal in a ring, and it will play a similar role to that of a normal subgroup in a
group. As we have chosen to only focus on commutative rings, this allows us to restrict our
interest to the exclusion of left ideals and right ideals which would otherwise arise.

Definition 2.8 (Ideal). Let R be a ring. A non-empty subset I ⊆ R is an ideal of R if:

• I is a subgroup of R under the + operation.
• For any r ∈ R and x ∈ I, r · x = x · r ∈ I.

A common notation for an ideal I of a ring R is

I E R.

Remark 2.9. We see that the second condition in the definition of an ideal is significantly
stronger than simply being closed under multiplication as with a subring. There are various,
colorful ways of describing this absorptive property of multiplication with ideals, such as
”ideals swallow by multiplication” or ”ideals are contagious for multiplication”.

Definition 2.10 (Field). A field is an integral domain with unit, in which every non-zero
element has a multiplicative inverse in the field.

Example. The set of integers modulo a prime p, Z/pZ, is a field. The fact that each non-zero
element has a multiplicative inverse derives from the following:

∀n ∈ {1, 2, . . . , p− 1}, gcd(n, p) = 1 =⇒ ∃a, b ∈ Z | an+ bp = 1 =⇒ an ≡ 1 (mod p).

Proposition 2.11 (Ideals in Field). Let K be a field. The only ideals in K are (0) and K
itself.

Proof. It is clear that (0) and K are ideals. Otherwise, let I be a proper and non-trivial
ideal, i.e., an ideal distinct from (0) and from K. Let a be a non-zero element in I. Then
a−1 exists in K, and by the absorptive multiplication property of I, we have a−1 · a ∈ I, so
1K ∈ I. But then for any other k ∈ K, since 1 ∈ I, we have k · 1K ∈ I, so K ⊆ I. �

Definition 2.12 (Principal Ideal). An ideal I of a ring R is principal if it is generated by
a single element a ∈ R, i.e., if

I = {x ∈ R : ∃y ∈ R such that x = ay}.
We denote such a principal ideal as (aR) or (Ra), or just (a) when the ring in question is
clear from context.

Example. In the ring of integers Z, the set of integer multiples of a given integer m, (mZ),
is an ideal. It is clearly an abelian group under addition, and multiplying any integer by a
multiple of m results in a multiple of m. This ideal an example of a principal ideal.

Remark 2.13. One way to grasp an intuition for an ideal generated by an element a is that
it is the set of all polynomials with coefficients in the ring R evaluated on the element a
generating the ideal.

Proposition 2.14 (Ideal with Unit). An ideal containing a unit of its ring generates the
entire ring.
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Proof. Let u ∈ I E R be a unit of the ring R with I an ideal of R. Then there exists an
inverse unit v = u−1 ∈ R such that vu = 1 in the ring. Since u ∈ I and v ∈ R, we have
1 = vu ∈ I. And with 1 ∈ I, for any x ∈ R, we must have x · 1 = x ∈ I, so I = R. �

Definition 2.15 (Proper Ideal). An ideal which is not the entire ring is said to be proper.
If I is a proper ideal of a ring R, we can denote this by

I / R.

Definition 2.16 (Maximal Ideal). A proper ideal is said to be maximal if it is maximal
with respect to set inclusion among proper ideals. Said otherwise, no other proper ideal is
nested between a maximal ideal and the ring of which it is a proper ideal.

Definition 2.17 (Principal Ideal Domain). A commutative ring in which all ideals are
principal is a principal ideal domain, also referred to as a PID. In such a ring, all ideals are
generated by a single element.

Proposition 2.18 (Z is a PID). The ring of integers Z is a PID.

Proof. We first note that if I has no non-zero elements, then I = (0) = {0}, which is the
trivial ideal, and it is clearly generated by a single element 0. Let I E Z be a non-trivial
ideal, so it must have at least a non-zero element, therefore at least a positive element (if
x ∈ I, then −x = (−1)x ∈ I). We can order the positive elements of I in increasing order,
and we let a be the least positive element in I. This element a exists, by the least ordering
principle over the natural numbers. We will show that I = (a).

As mentioned above, for any x ∈ I, if x ≤ 0, then x = (−1)(−x) with −x in the set of
positive elements of I, or x ≥ 0 in the first place, so we can focus on the non-negative
elements of I. We use the Euclidean division algorithm, and we have:

x = aq + r, with 0 ≤ r < a.

Since x ∈ I and a ∈ I =⇒ aq ∈ I, we must have r = x − aq ∈ I because I is a group
under addition. We have just found an element r ∈ I with 0 ≤ r < a. The only way to not
contradict the minimality of a among the positive elements of I is to have r = 0, so x = aq.

We have just shown that any element of the ideal I E R is a multiple of a single element a,
where a is the least positive element of I, so I ⊆ (a). Since it is clear that a ∈ I =⇒ (a) ∈ I,
we have I = (a), i.e., every ideal of Z is principal, and Z is a PID. �

Definition 2.19 (Noetherian Ring). A commutative ring is a noetherian ring if all ideals
are finitely generated, i.e., no ideal in that ring requires an infinite set to generate it.

Example (Polynomials with Even Constant Coefficient). In the ring of polynomials with
integer coefficients Z[X], the set of polynomials with even constant coefficient is an ideal.
This ideal is not principal, however. It is generated by the set of polynomials {2, X} and
every polynomial in this ideal is of the form 2P (X)+XQ(X) for some P (X), Q(X) ∈ Z[X].
The ring Z[X] is therefore not a PID. This ring is in fact noetherian, though the example of
a single ideal being finitely generated isn’t sufficient to prove it. The Hilbert Basis Theorem
proves that if a ring R is noetherian, then so is the associated polynomial ring R[X] with
coefficients in R.
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Proposition 2.20 (Ascending Ideals in Noetherian Rings). A ring R is noetherian if and
only if every infinite ascending sequence of ideals I1 ⊆ I2 ⊆ . . . ⊆ Ik ⊆ Ik+1 ⊆ . . . eventually
stabilizes, i.e., there exists n ∈ N such that In+N = In for all N ∈ N.

Proof. If the ring R is noetherian, then every ideal of R is finitely generated. We consider

I =
∞⋃
i=1

Ik.

We claim that I is an ideal. We first show that it is an abelian group under addition:

• Identity: each of the Ik contains 0 and so does their union I.
• Inverses: each element x ∈ I is the element of some Ik, and so is its inverse x−1 ∈
Ik ⊆ I, so I is closed under taking inverses.
• Closure: for any two elements x, y ∈ I, there is some k1 and some k2 such that
x ∈ Ik1 and y ∈ Ik2 , so x, y ∈ Imax(k1, k2) due to the ascending sequence of the
Iks. Since Imax(k1, k2) is an abelian subgroup, it is also closed under addition so
x+ y ∈ Imax(k1, k2) ⊆ I.

We now show that I satisfies the multiplicative property of ideals. We let r ∈ R and x ∈ I.
Then x ∈ Ik for some k, and since Ik is an ideal, we have rx ∈ Ik ⊆ I, so I has the
”absorptive property of multiplication by elements of R”.

Since I is an ideal, it must be finitely generated, so there is a finite set {x1, . . . , xm} ⊆ R
that generates I, i.e., we have I = (x1, . . . , xm). For each i ∈ {1, . . . , m}, there is some
ideal Iki such that xi ∈ Iki . We note that xi ∈ Iki =⇒ (xi) ⊆ Iki . We now define
n = max(k1, . . . , km). By the ascending nature of the sequence of ideals, we have:

(2.2) (xi) ⊆ Iki ⊆ In for all i ∈ {1, . . . , m}.
With the equation above, we now show that the ideal (x1, . . . , xm) generated by the set of
xi is also a subset of In. Indeed, an element of (x1, . . . , xm) is a polynomial with coefficients
in R in the variables x1, . . . , xm. Each monomial in that sum is a product of xis, each of
which is in In so the product making up the monomial is in In because ideals are closed
under multiplication. And with In being closed under addition, the entire polynomial is in
In. We have therefore shown that:

(2.3) I = (x1, . . . , xm) ⊆ In.

And we of course also have In ⊆
⋃∞
i=1 Ii = I, so we have

(2.4) I = In =⇒ In+N ⊆ I ⊆ In =⇒ In+N = In for all N ∈ N.
For the reverse direction, we consider an ideal I E R and we want to show that it is finitely
generated. If I is not finitely generated, let us choose a1 ∈ I and define a first ideal I1 = (a1).
We have I1 ( I or else I would have been finitely generated. So we can pick an element
a2 ∈ I \ (a1), and form the ideal I2 = (a1, a2), with I1 ⊆ I2. Again since I is not finitely
generated, we must have (a1, a2) ( I, so we can pick an element a3 ∈ I\ (a1, a2), and define
I3 = (a1, a2, a3).

We can iterate this process indefinitely, relying on the fact that I is not finitely gener-
ated, allowing us to always pick the next ak ∈ I \ Ik−1 and form the next Ik = (a1, . . . , ak)
in an infinite ascending sequence of ideals, where the inclusion is strict because each Ik
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contains an element ak ∈ I \ Ik−1, i.e., ak 6∈ Ik−1. This contradicts the assumption that
every infinite increasing sequence of ideals must stall at some point and beyond. �

We now introduce two important concepts related to rings and ideals, that extend those
that we have seen for groups and normal subgroups. The first will be the concept of quo-
tient rings obtained by defining equivalence classes on ring elements. The second will be
the concept of homomorphisms of rings that extend the structure preservation to the two
operations of a ring.

Proposition 2.21 (Quotient Ring). Let R be a commutative ring with unit, and let I be an
ideal of R. We define the relation on R

(2.5) xRy if and only if x− y ∈ I, for x, y ∈ R.
This defines an equivalence relation on R. We then define addition and multiplication on
these equivalence classes, and we show that this endows the equivalence classes with a ring
structure. This is the quotient ring of R by I, denoted R/I.

Proof. Since the ideal I is an abelian subgroup of R for addition, it is clear that xRx be-
cause 0 ∈ I, so we have reflexivity. It is also clear that if xRy, i.e., if x − y ∈ I, then
−(x− y) = y − x ∈ I because I is closed under additive inverses, so yRx. And if xRy and
yRz, then x− y ∈ I and y− z ∈ I, so that x− z = (x− y) + (y− z) ∈ I because I is closed
under addition, so xRz and we have transitivity. We have therefore shown that we have an
equivalence relation, and that the equivalence classes partition the ring R. We will denote
equivalence of two ring elements x and y by x ∼ y.

We now define addition and multiplication on the equivalence classes I as follows:

• (x+ I) + (y + I) = (x+ y) + I.
• (x+ I) · (y + I) = xy + I .

These operations are well-defined, i.e., they do not depend on the choice of representative
of an equivalence class. Indeed, let x′ ∈ x + I, i.e., x − x′ = i1 ∈ I and let y′ ∈ y + I, i.e.,
y − y′ = i2 ∈ I. Then x′ + y′ = x− i1 + y − i2 = (x+ y)− (i1 + i2), with −(i1 + i2) ∈ I due
to the additive group property of I. We have therefore shown that (x′ + y′) − (x + y) ∈ I,
i.e., (x′ + y′) ∼ (x + y), and that addition of equivalence classes is indifferent to the choice
of class representatives.

Similarly for multiplication, we have: x′y′−xy = (x− i1)(y− i2)−xy = i1i2−xi2− yi1 ∈ I,
with i1i2 − xi2 − yi1 ∈ I due to the absorptive multiplication property of I and its closure
under addition. We have therefore shown that x′y′ ∼ xy, and that multiplication is indiffer-
ent to the choice of class representative.

From the definition of the addition and multiplication operations, it is clear that the set
of equivalence classes is closed under these operations, so we have closure under the two
binary operations. It is also clear that we have commutativity for both addition and multi-
plication, as these are inherited from those in the parent ring R.

There is an additive identity element which is 0R + I = I, and it is easily seen that
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x + I + I = x + I for all x ∈ R, so the class corresponding to the ideal I itself is the
additive identity element.

There is also a multiplicative identity element which is 1R + I, as we can verify: for x ∈ I,
we have (x+ I)(1R + I) = (1R · x) + I = x+ I.

Lastly, we have additive inverses with −(x+I) being (−x)+I, as their sum is (x+(−x))+I =
0 + I = I.

We therefore have a ring structure on the classes modulo the ideal I, which we designate
as the quotient ring of R by I: R/I. We also note that if the ring R has units, then the
corresponding classes modulo I are also units in the quotient ring R/I as can be easily seen
from the definition of multiplication of classes. �

Definition 2.22 (Ring Homomorphism). We extend the concept of group homomorphisms
to structure preservation with two operations, via the concept of ring homomorphisms.
Specifically, we let R and R′ be two rings, with additive identities 0R and 0R′ and mul-
tiplicative identities 1R and 1R′ , respectively, and with multiplication operations ∗ and ·,
respectively. A function φ : R→ R′ is a ring homomorphism if it satisfies:

• φ(x+ y) = φ(x) + φ(y) for all x, y ∈ R
• φ(x ∗ y) = φ(x) · φ(y) for all x, y ∈ R
• φ(0R) = 0R′

• φ(1R) = 1R′

Proposition 2.23 (Subring, Ideal, and Ring Homomorphism). Let φ : A → B be a homo-
morphism from the ring A to the ring B. Then:

• The image by φ of A, φ(A), is a subring of B.
• If I is an ideal of A, then φ(I) is an ideal of φ(A). It is not necessarily an ideal of
B, especially if φ is not surjective in B.
• The kernel of φ, i.e., the set of elements of A whose image by φ is 0B is an ideal of
A.
• If J is an ideal of B, then the pre-image of J by φ, i.e., φ−1(J) is an ideal of A.

Proof. We go through each point in the proposition.

• The proof of the first point carries easily from the properties of a ring homomorphism,
so we skip detailing it.
• Let b ∈ φ(I) and let y ∈ φ(A). We want to show that yb ∈ φ(I). We know that
b = φ(a) for some a ∈ I, and y = φ(x) for some x ∈ A. Then yb = φ(x)φ(a) = φ(xa),
and xa ∈ I because I is an ideal in A. Therefore yb = φ(xa) ∈ φ(I), which shows
that φ(I) is an ideal of the subring φ(A) of B. We give an example of φ(I) failing
to be an ideal of the entire ring B: if A = Z and B = Q, with φ being the (trivial)
inclusion embedding that sends an element of Z to itself as an element of Q. We
recall from Proposition 2.11 that the only ideals in a field are the (0) ideal and the
field itself, so this is true of Q. Yet, if we take an ideal of Z, such as nZ for some
n 6= 0, its image by the inclusion homomorphism is itself, which is neither (0) nor Q.
• We already know that the kernel of a group homomorphism is a (normal) subgroup.

We now let r ∈ ker(φ) and x ∈ A. We then have φ(x·r) = φ(x)·φ(r) = φ(x)·0B = 0B,
which shows that x · r ∈ ker(φ). So ker(φ) is an ideal of A.
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• Similarly, we already know that the pre-image by a group homomorphism of a sub-
group of B is a subgroup of A. We now let r ∈ φ−1(J) and x ∈ A, and we want to
show that x · r ∈ φ−1(J). We have φ(x · r) = φ(x) · φ(r) with φ(x) ∈ B and φ(r) ∈ J,
so φ(x) ·φ(r) ∈ J because J is an ideal of B. This shows that x · r ∈ φ−1(J), and thus
φ−1(J) has the absorptive property of multiplication which makes it an ideal of A.

�

Theorem 2.24 (Ring Isomorphism Theorem). Let φ : A→ B be a homomorphism of rings.
We then have

(2.6) A/ ker(φ) ∼= im(φ).

Proof. We show the isomorphism between the quotient ring and the image by defining it.
We let:

Ψ : A/ ker(φ)→ im(φ)

a+ ker(φ) 7→ φ(a)

We show that Ψ is well-defined, injective, surjective, and a ring homomorphism. We already
know from group theory that Ψ is well-defined, injective, surjective, and a group homomor-
phism. So what is left to prove is that it also preserves multiplication of the quotient ring
when mapping it to the image.

Let a+ ker(φ) and b+ ker(φ) be two elements of the quotient ring. We have:

Ψ[(a+ ker(φ)) · (b+ ker(φ))] = Ψ(a · b+ ker(φ)) = a · b = Ψ(a+ ker(φ)) ·Ψ(b+ ker(φ)).

We have therefore shown preservation of the multiplicative structure as well, thus completing
the proof that Ψ is an isomorphism of rings from A/ ker(φ) to im(φ). �

3. Arithmetic on Ideals

In this section, we will first define a few significant types of ideals as well as operations on
ideals with number theoretic significance.

Definition 3.1 (Prime Ideal). An ideal I of a ring R is said to be prime if it is proper and
if whenever a, b ∈ R are such that ab ∈ I, then either a ∈ I or b ∈ I.

Remark 3.2. We can see that the prime ideal definition extends to rings the concept of
Euclid’s Lemma, which states that in the integers, an integer p is a prime numbers if whenever
p | ab for some a, b ∈ Z, then p | a or p | b.

Example. In the integers, a prime ideal is the set of all multiples of a prime number p,
including 0. For instance, the ideals (2Z) and (7Z) are prime ideals in the ring of integers.
The proof of this is simply a restatement of the definition of a prime number: p | ab =⇒
p | a or p | b is equivalent to stating that if ab is a multiple of p, then a is a multiple of p or
b is a multiple of p, which is equivalent to saying that if ab ∈ (pZ), then a ∈ (pZ) or b ∈ Z).

Example. We have already seen the example of the ideal of polynomials with integer coeffi-
cients and with even constant coefficient, when we discussed this ideal being not principal
and being generated by the set of two ring elements {2, X}. This ideal is in fact a prime
ideal. Indeed, if the product of two polynomials with integer coefficients has an even constant
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coefficient, then at least one of the polynomials in the product must have an even constant
coefficient (or else the constant coefficient of the product would be odd as the product of
two odd constant coefficients).

Definition 3.3 (Spectrum). Let R be a commutative ring with unit. We define the spectrum
of R to be the set of its prime ideals.

(3.1) Spec(R) = {I : I / R, I prime}.

Proposition 3.4 (Quotient by Prime Ideal). Let R be a ring and I an ideal of R. The ideal
I is prime if and only if the quotient ring R/I is an integral domain.

Proof. If I is a prime ideal of R, then we consider two elements of R/I, say a+ I and b+ I,
such that their product (a+I)(b+I) = (ab+I) is equal to the zero element of the quotient
ring, i.e., ab+ I = I. This implies that ab ∈ I. And since I is prime, by definition, we must
have a ∈ I or b ∈ I, or equivalently, a + I = I or b + I = I, which shows that R/I is an
integral domain.

Conversely, if R/I is an integral domain, and we consider two elements a, b ∈ R such
that ab ∈ I. This implies that ab+ I = I, and equivalently (a+ I)(b+ I) = I. By the fact
that R/I is an integral domain, a product of two elements is the zero element implies that
one of the elements is the zero element. So either a+I = I or b+I = I. Equivalently, a ∈ I
or b ∈ I, and we have thus shown that the ideal I is prime. �

Proposition 3.5 (Pre-Image of Prime Ideal). Let φ : A→ B be a ring homomorphism. Let
J be a prime ideal of B. Then φ−1(J), the pre-image of J by φ, is a prime ideal of A.

Proof. We have already shown in Proposition 2.23 that the pre-image of an ideal by a ring
homomorphism is an ideal. We now show that if J is prime, then its pre-image is also prime.

We let a, b ∈ A and suppose ab ∈ φ−1(J). Then φ(ab) = φ(a)φ(b) ∈ J. Since J is prime,
we must have φ(a) ∈ J or φ(b) ∈ J. This implies that a ∈ φ−1(J) or b ∈ φ−1(J). We have
shown that φ−1(J) is a prime ideal in A. �

3.1. Operations on Ideals and Principal Ideals.

Proposition 3.6 (Intersection of Principal Ideals). Let I = (a) and J = (b) be principal
ideals in a ring R. Then I ∩ J is a principal ideal generated by lcm(a, b).

Proof. Let r ∈ (a) ∩ (b), then a | r and b | r, which implies that lcm(a, b) | r as the least
common multiple of two integers divides any common multiple of these integers, in this case r.

In the reverse direction, it is clear that lcm(a, b) is a multiple of a, therefore it is an el-
ement of (a), as well as a multiple of b, therefore it is an element of (b), and thus an element
of (a) ∩ (b). �

Definition 3.7 (Product of Ideals). Let I and J be ideals of a ring R. We define the product
ideal as the ideal generated by products of elements from I and from J. Equivalently, it is
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the set of finite sums of products

(3.2) IJ = {
n∑
i=1

xiyi : xi ∈ I, yi ∈ J, n ∈ N}.

Proposition 3.8 (Product of Principal Ideals). Let I = (a) and J = (b) be principal ideals
in a ring R. Then the product ideal of I and J is IJ = (a)(b) = (ab), i.e., it is the principal
ideal generated by the product of a and b.

Proof. Let r ∈ IJ = (a)(b). Then, by definition of the product of ideals, r =
∑n

i=1 xiyi with
xi ∈ (a) and yi ∈ (b), i.e., r =

∑n
i=1 riar

′
ib = (

∑n
i=1 rir

′
i)ab for some set of ri, r

′
i ∈ R, which

shows that r ∈ (ab). So (a)(b) ⊆ (ab).

The reverse direction is simple as r ∈ (ab) =⇒ r = r′ab for some r′ ∈ R. With r = r′a · b,
we have expressed r as the product of an element of (a) (which is r′a) and an element of (b)
(which is b itself). So (ab) ⊆ (a)(b). �

Definition 3.9 (Sum of Ideals). Let I and J be two ideals of a ring R. We define the sum
ideal of I and J as the ideal generated by sums of elements from I and from J. Since each
ideal is an abelian subgroup for addition, any element of the sum ideal is itself just the sum
of an element of I with an element of J.

(3.3) I + J = ({x+ y : x ∈ I, y ∈ J}) = {x+ y : x ∈ I, y ∈ J}.

Proposition 3.10. The sum of ideals is a well-defined ideal.

Proof. The set I+ J inherits the properties of addition and multiplication of its parent ring
R, so we focus on showing that it is a subgroup under addition and that it has the absorptive
multiplication property.

It is clear that I + J is non-empty and has the additive identity element as 0 = 0 + 0.
Let r = x+ y ∈ I+ J, with x ∈ I and y ∈ J and r′ = x′+ y′ ∈ I+ J with x′ ∈ I and y′ ∈ J.
Then r − r′ = (x − x′) + (y − y′) with x − x′ ∈ I and y − y′ ∈ J as I and J are additive
(abelian) subgroups. So r − r′ ∈ I + J. This proves that I + J is a subgroup of R under
addition.

We now let r ∈ R and a = x+y ∈ I+J, with x ∈ I and y ∈ J. Then ra = r(x+y) = rx+ry
with rx ∈ I and ry ∈ J thanks to the absorptive multiplication property of I and of J. So
ra ∈ I+J , and we have shown that I + J is an ideal. �

Proposition 3.11 (Sum of Principal Ideals). Let I = (a) and J = (b) be principal ideals in
a Euclidean or norm-Euclidean ring R. Then

(3.4) (a) + (b) = (d), where d = gcd(a, b).

Proof. Let r = x+ y with x ∈ (a) and y ∈ (b), then x = x′a and y = y′b for some a, a′ ∈ R,
so that r = x′a+ y′b. If r is an integer linear equation in a and b, then r must be a multiple
of gcd(a, b), so r ∈ (gcd(a, b)). We note that we needed the Euclidean property to have a
well-defined gcd.

In the reverse direction, let r ∈ (d) where d = gcd(a, b). We therefore have r = zd for
some z ∈ R. By Bézout’s Lemma, or the extended Euclidean Algorithm, there are x, y ∈ R
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such that d = xa+ yb, with xa ∈ (a) and yb ∈ (b) by the absorptive multiplicative property
of ideals. So we have shown that d ∈ (a) + (b) and consequently (d) ⊆ (a) + (b) because all
multiples of d such as r = zd are in the ideal (a) + (b) if d is in it. �

3.2. Field of Fractions and Fractional Ideals. As one of the last required algebraic struc-
tures needed before introducing ideal class groups, we need to introduce fractional ideals.
These ideals are generally defined with respect to a structure called the field of fractions of
our integral domain of interest. We will see that such fractional ideals can sometimes be
contained within our ring of interest, but not always. The field of fractions of an integral
domain generalizes the relationship that Q plays with respect to Z.

Definition 3.12 (Field of Fractions). Given an integral domain that is also unitary R and
with R∗=\{0}, we define an equivalence relation on R×R∗ by setting

(3.5) (n, d) ∼ (n′, d′) if and only if nd′ = n′d.

It is trivial to see that the relation is reflexive and symmetric, so we just show that it
is transitive. We let (n, d), (n′, d′), (n′′, d′′) be in R × R∗, with (n, d) ∼ (n′, d′) and
(n′, d′) ∼ (n′′, d′′). We then have:

nd′ = n′d =⇒ n′′nd′ = n′′n′d,

and
n′d′′ = n′′d′ =⇒ nn′d′′ = nn′′d′,

so that, with n′′nd′ = nn′′d′ by commutativity, we have:

n′′n′d = nn′d′′, i.e., n′(n′′d− nd′′) = 0.

If n′ = 0, then we must also have n = n′′ = 0 because nd′ = n′d andn′d′′ = n′′d′ and we
clearly have nd′′ = n′′d = 0. Otherwise, and since we are in an integral domain, n′ 6= 0
implies that the other factor n′′d− nd′′ = 0, and we have proven transitivity.

With the equivalence relation in place, we denote an equivalence class by n
d
. We then

define addition and multiplication on the equivalence classes with

(3.6)
n

d
+
n′

d′
=
nd′ + n′d

dd′
,

and

(3.7)
n

d
· n
′

d′
=
nn′

dd′
.

It can be verified but we will skip it for the sake of brevity that this is a field structure on
the equivalence classes which are the fractions. The class with 0 as numerator is the additive
identity, and the class of 1

1
is the multiplicative identity, and the additive inverse of n

d
is −n

d

and the multiplicative inverse of a non-zero element n
d

is d
n
. We note that commutativity of

multiplication is derived from the integral domain R being commutative by definition.

We also note that the unitary integral domain R can be naturally embedded into its field of
fractions via the injection that maps r ∈ R to the class r

1
in the field of fractions. In fact,
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even if the integral domain R did not have a unit, we could still embed R into its field of
fractions by mapping r ∈ R to rx

x
with x 6= 0, and the embedding is insensitive to the choice

of x 6= 0 because such fractions x
x

are all one equivalence class.

We now proceed with the definition of fractional ideals in the context of the field of
fractions. First, we recall that a module generalizes the notion of vector space over a field,
by relaxing the condition of field to a less restrictive condition of ring.

Definition 3.13 (Module over a Ring). A set M is a module over a ring R or an R-module
if (M, +) is a commutative ring, and there is a so-called scalar multiplication operation
between elements of R (the scalars) and elements of the module with results in the module,
with the following properties. For all r, s ∈ R and m1, m2 ∈M , we have:

• r ·m1 ∈M
• r · (m1 +m2) = r ·m1 + r ·m2

• (r + s)m1 = r ·m1 + s ·m1

• (rs) ·m1 = r · (s ·m1)
• 1 ·m1 = m1

The last condition above can be dropped if the ring R is not unitary. When R is not
commutative, there are distinct definitions of left-modules and right-modules, but we will
confine our interest in two-sided modules with the assumption of working with R being
integral and unitary too.

Definition 3.14 (Sub-Module). A subset M ′ of a module M over a ring R is a sub-module
if it is an abelian subgroup of (M, +) and is also closed under the scalar multiplication
operation.

Remark 3.15. In our context, we will restrict ourselves to modules or sub-modules that
are finitely generated also known as of finite dimension. This definition is identical to the
definition for vector spaces, i.e., it refers to modules that have a finite basis of n elements,
and such that every element of the module can be expressed as a linear combination of the n
module elements, with coefficients of the linear combination being elements of the ring over
which our module is defined.

We now get to the definition of a fractional ideal which will be at the core of our ideal
class group discussion.

Definition 3.16 (Fractional Ideal). Let R be a ring and K its field of fractions. A subset
I of the field of fractions K is a fractional ideal of R if I an R-submodule of the field of
fractions K such that there exists r ∈ R∗ satisfying rI ⊆ I.

We can think of the elements of I as having a common denominator r, and of multipli-
cation of elements of I by r as clearing their denominator.

Even though we have already defined ideals of a ring R as just ideals when they are subsets
of R, these ideals are sometimes referred to as integral ideals for contrast, when the context
also includes fractional ideals. So we formalize the definition in the following.

Definition 3.17 (Integral Ideal). When a fractional ideal I is contained within the ring R,
we refer to it as an integral ideal.
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Definition 3.18 (Principal Fractional Ideal). A fractional ideal I of a ring R with field of
fractions K is a principal fractional ideal if it is generated by a single, non-zero element of
K.

3.3. Dedekind Domains. We end this section with a brief introduction of Dedekind do-
mains before getting into ideal class groups, the core subject of this paper in the next section.
As we have seen in Equation 1.1 at the start of the paper, some rings do not exhibit unique
factorization into primes up to units. Historically speaking, the concept of ideals came about
as an attempt to remedy what could not be done with ring elements (such as unique prime
factorization) by doing it with so-called ”ideal numbers”, which we now call ideals. Dedekind
domains are algebraic structures that exhibit unique factorization into primes, but at the
level of ideals rather than at the level of ring elements.

Definition 3.19 (Dedekind Domain). We let R be a commutative ring with unit as well as
an integral domain. R is said to be a Dedekind domain if every non-zero proper ideal of R
factors into a product of prime ideals, with factoring in the sense of the ideal multiplication
as defined in Definition 3.7.

We end with a few properties of Dedekind domains.

Proposition 3.20 (Fractional Ideals in Dedekind Domains). In a Dedekind domain, every
non-zero fractional ideal is multiplicatively invertible.

Proposition 3.21 (Ideal Inclusion and Divisibility). Let R be a Dedekind domain, and I1

and I2 two ideals in R. Then, I1 ⊆ I2 if and only if I2 divides I1 as ideals, i.e., if and only
if there exists an ideal a such that I1 = I2a.

Proposition 3.22 (PIDs are Dedekind Domains). A Principal Ideal Domain is a Dedekind
domain.

Proposition 3.23. A Dedekind domain is a PID if and only if it is a Unique Factorization
Domain.

4. Ideal Classes and Ideal Class Group

We briefly introduce algebraic numbers, algebraic integers, and the ring of integers of an
algebraic field.

Definition 4.1 (Algebraic Number). An algebraic number is a complex number that is a
root of a polynomial with coefficients in Q.

Definition 4.2 (Algebraic Integer). An algebraic integer is a complex number that is a root
of a monic polynomial with coefficients in Z.

Definition 4.3 (Algebraic Number Field). A subfield K of C is called an algebraic number
field if [K : Q] is finite.
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Definition 4.4 (Ring of Algebraic Integers). With K ⊆ C an algebraic number field, the
subset of K consisting of algebraic integers forms a ring OK , called the ring of algebraic
integers in K, or the ring of integers in K.

We now introduce an equivalence relation on ideals of the ring of integers OK , from which
the equivalence classes will be the main object of our remaining study.

Definition 4.5. Let I1 and I2 be ideals fo OK . We define the relation R on ideals of OK
as:

(4.1) I1RI2 ⇐⇒ ∃α, β ∈ OK , α, β 6= 0, such that (α)I1 = (β)I2.

Proposition 4.6 (Ideal Equivalence). The relation on ideals as defined above is an equiva-
lence relation.

Proof. We prove that the relation is reflexive, symmetric, and transitive.

• Reflexive: for any α 6= 0 in OK and any I E OK , we have (α)I = (α)I.
• Symmetric: obviously true by switching the positions of α and I1 with those of β

and I2, respectively.
• Transitive: we suppose (α)I1 = (β)I2 and (β′)I2 = (γ)I3, then

(α)(β′)I1 = (β)(β′)I2 = (β)(γ)I3 =⇒ (αβ′)I1 = (βγ)I3,

and αβ′ 6= 0, αβ′ ∈ OK and βγ 6= 0, βγ ∈ OK because OK is a ring, thus closed
under multiplication and is an integral domain, thus a product of non-zero elements
cannot be zero.

We have therefore shown that we have an equivalence relation on non-zero ideals of OK . �

Definition 4.7 (Ideal Classes). The equivalence relation above partitions the non-zero ideals
of OK into equivalence classes, which we call ideal classes of OK .

Although we haven’t proven it at this point, it turns out that the number of ideal classes
of an algebraic number field K is always finite, so it is relevant to make mention of this
number.

Definition 4.8 (Class Number). The number of ideal classes is called the class number of
the field K, and is denoted hK .

Proposition 4.9 (Class Number of a PID). The class number hK is equal to 1 if and only
if the ring of integers of K , OK, is a Principal Ideal Domain, i.e., if and only if every ideal
I E OK is a principal ideal, of the form (α) for some α ∈ OK.

Proof. If OK is a PID, then every ideal is of the form (α) with α ∈ OK . As a result, any
two ideals (α) and (β) are in the same equivalence class because we have:

(β)(α) = (α)(β) = (αβ) =⇒ (α) ∼ (β).

We therefore have a single equivalence class, and hK = 1.
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In the reverse direction, we suppose that hK = 1, i.e., all ideals are equivalent. We re-
call that OK itself is an ideal, as is always the case with a ring. So for any ideal I E OK ,
we have

I ∼ OK =⇒ ∃α, β ∈ OK | (α)I = (β)OK = (β).

Since (α)I ⊆ (α), we have (β) ⊆ (α), i.e., α divides β. Therefore, we have that β
α
∈ OK , so

there is some γ ∈ OK such that β = αγ.

We now have (α)I = (αγ) = (α)(γ). Here too, we rely on an algebraic number theory
result that lets us conclude that I = (γ), with γ ∈ OK , so I is a principal ideal in OK . This
completes the proof that OK is a Principal Ideal Domain. �

Remark 4.10. We recall that in a Dedekind domain, being a PID is equivalent to being a
UFD. Thus, when the class number of a field K is equal to 1, the corresponding ring of
integers OK is a PID and therefore a UFD.

Remark 4.11. In the interest of brevity, we will skip detailing the proof that hK is always
finite. The key idea in the proof is to study an n-dimensional lattice and to use a pigeonhole
principle to show that any fractional ideal is in the same coset of OK/I as an integral ideal,
and to use an algebraic number theory result that there are finitely many cosets in that
quotient ring.

The key consequence of the fact that all fractional ideals reside within the same classes as
the integral ideals, is to allow manipulations on ideals where an integral ideal can be (mul-
tiplicatively) inverted and we get a fractional ideal, which can be multiplied by the ideal
generated by some ring element to clear its denominator and get an integral ideal again,
invert that one again, etc., all the while remaining in the same ideal class.

We now prove an important proposition that will enable us to define a group structure
on ideal classes.

Proposition 4.12 (Powers of Ideal Become Principal). For any ideal I E OK, there is
some integer m, with 1 ≤ m ≤ hK, such that Im is principal.

Proof. We consider the set of ideals {Ii : 1 ≤ i ≤ hK + 1} . Since there is a total of hK ideal
classes, at least two of these ideals must fall within the same class. We suppose Ii ∼ Ij,
with i < j. By definition of being in the same class, there exist α, β ∈ OK such that
(α)Ii = (β)Ij. We set m = j − i, and we have:

(4.2) (α)Ii = (β)ImIi.

As reasoned above in the proof of Proposition 4.9, we have α
β
Ii ⊆ Ii, and α

β
∈ OK , i.e., β

divides α. If we set γ = α
β
, we now have

(γ)Ii = ImIi.

We apply the same result that we referenced in the reverse direction proof of Proposition 4.9
and we conclude that Im = (γ), i.e., Im is principal. �
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We now show that the set of ideal classes can be endowed with a group structure by
defining a multiplication operation on the ideal classes derived from the multiplication on
the ideals. The identity element is the class of principal ideals, and each ideal class has an
inverse class.

Proposition 4.13 (Ideal Class Group). We consider the set of classes of ideals in OK, and
we designate the class of the ideal I by [I]. We define the multiplication operation on ideal
classes as [I][J] = [IJ]. This endows the set of ideal classes in OK with a group structure.

Proof. We first show that the operation is well-defined, i.e., that it does not depend on the
choice of representative of the class.

Let [I1] = [I2] and [J1] = [J2]. Then, there are α1, β1, α2, β2 ∈ OK such that

(α1)I1 = (α2)I2,

and

(β1)J1 = (β2)J2,

so that

(α1)(β1)I1J1 = (α2)(β2)I2J2,

i.e.,

(α1β1)I1J1 = (α2β2)I2J2,

which shows that

[I1J1] = [I2J2].

Associativity (and commutativity, for that matter) is inherited from associativity of the op-
eration on ideals.

The identity element is the class of OK , which is the class of all the principal ideals.

Lastly, in Proposition 4.12 we have shown that Im is principal for some m, 1 ≤ m ≤ hK .
This means that [Im] is equal to the identity element [OK ]. So the inverse of [I] is [Im−1].

We therefore have a multiplicative group structure on the classes of ideals of OK , and the
order of the group is hK . �

We now prove two propositions that allow us to prove the theorem that any ideal in OK
can be uniquely factored into prime ideals.

Proposition 4.14 (Cross Division). Let I1, I2, and I3 be ideals in OK. If I1I2 = I1I3,
then I2 = I3.

Proof. By Proposition 4.12, there is an integer m,1 ≤ m ≤ hK and an algebraic integer
α ∈ OK such that Im1 = (α).
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We have

I1I2 = I1I3 =⇒ Im−11 I1I2 = Im−11 I1I3 =⇒ (α)I2 = (α)I3.

An element of (α)I2 is of the form
∑

i αxi · yi, with xi ∈ OK and yi ∈ I2. This is equal
to α

∑
i xiyi, and

∑
i xiyi is just the form of any element of I2. So any element of (α)I2

is of the form αx with x ∈ I2. Similarly, every element of (α)I3 is of the form αy, with y ∈ I3.

But by equality of (α)I2 = (α)I3, any element αx with x ∈ I2 is equal to αy for some
y ∈ I3. We pick a non-zero element αx in (α)I2, and we have:

αx = αy ⇐⇒ α(x− y) = 0 =⇒ x = y,

where the last implication above is because OK is an integral domain. This shows that
αx ∈ I3, and consequently I2 ⊆ I3.

The argument is completely symmetric in the two ideals, so we conclude that I2 = I3. �

Proposition 4.15 (Containing is Dividing). If I and J are in OK, and I ⊆ J. Then there
is an ideal H such that JH = I.

Proof. Let Jm = (α). Then we have:

IJm−1 ⊆ JJm−1 = (α).

The ideal inclusion IJm−1 ⊆ (α) shows that α divides every element in the ideal IJm−1. We
set H =

(
1
α

)
Jm−1I, which is an ideal in OK , and we have:

JH = JJm−1
(

1

α

)
I = (α)

(
1

α

)
I = I.

�

Proposition 4.16 (Factorization into Prime Ideals). Every non-zero ideal in OK can be
written as a product of prime ideals.

Proof. The ideal OK is trivially prime, so we focus on proper ideals. Let I be a proper ideal
in OK . We accept an algebraic number theory result that OK/I is finite. Then, there is
some maximal P1 such that I ⊆ P1. By Proposition 4.15, there is some ideal Q1 such
that I = P1Q1. If Q1 ( OK , then it is contained in some maximal ideal P2, and then
I = P1P2Q2. If Q2 ( OK , we continue the process, while building a strictly ascending
chain of proper ideals

I ⊂ Q1 ⊂ Q2 ⊂ . . .

But accept as fact an algebraic number theory result that OK is noetherian. So the ascending
chain must stabilize after some finite number of steps, i.e., Qr = OK for some r ∈ N. This
implies

(4.3) I = P1 . . .Pr for some finite r ∈ N,

with all Pi in the product being prime ideals. �
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Proposition 4.17 (Powers of Prime Ideal). Let P be a prime ideal in OK. The chain of
ideals P ⊃ P2 ⊃ P3 ⊃ . . . is a strictly descending chain of ideals.

Proof. If Pm = Pm+1 for some m, then by a lemma that requires viewing an ideal as a finitely
generated module over the ring (and which we omit proving), we would have P = OK . This
is a contradiction because a prime ideal is proper, by definition. �

Definition 4.18 (Order of a Prime Ideal in an Ideal). Let I be an ideal in OK and P be a
prime ideal in OK . We define the order of P in I, and denote it by ordP I, to be the unique
non-negative integer m such that Pm ⊇ I and Pm+1 6⊇ I.

Proposition 4.19 (Properties of Order of Prime in Ideal). Let P be a prime ideal in OK.
Then

(1) ordP P = 1.
(2) If P′ 6= P is a prime ideal in OK, then ordP P′ = 0.
(3) If I and J are two ideals in OK, then ordP IJ = ordP I + ordP I.

Proof. We prove each of the claims in the proposition.

(1) We clearly have P ⊇ P so ordP P ≥ 1. If ordP P ≥ 2, then P2 ⊇ P, which
implies P2 = P. This implies P = OK by the same lemma that we have referred to
in Proposition 4.17. But a prime ideal is proper, so we have a contradiction, and
ordP P = 1.

(2) If ordP P′ ≥ 1, then P ⊇ P′. We accept as fact that every prime ideal of OK is
maximal, so we must have P ⊇ P′, in contradiction of the assumption. So ordP P′ =
0.

(3) Let i = ordP I and j = ordP J. Then, by Proposition 4.15, there are ideals I′ and J′

such that
I = PiI′ and J = PjJ′,

and by definition of the order of the prime ideal in another ideal, we also have

(4.4) P 6⊇ I′ and P 6⊇ J′.

We now consider the ideal IJ = I′J′Pi+j. If Pi+j+1 ⊇ IJ, then by Proposition 4.15,
we have

Pi+j+1H = IJ for some ideal H.

And by Proposition 4.14, we must have

PH = I′J′,

therefore
P ⊇ I′J′.

Since P is prime, this implies

P ⊇ I′ or P ⊇ J′,

and this contradicts Equation 4.4. So ordP IJ = i+ j.

We therefore have
ordP IJ = ordP I + ordP J.

�
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We are now equipped to state the theorem of unique factorization of ideals in OK into
prime ideals of OK .

Theorem 4.20 (Unique Factorization of Ideals into Prime Ideals). Let I be an ideal of
OK. We recall that the spectrum of the ring OK is its set of prime ideals, and is denoted by
Spec(OK). Then,

(4.5) I =
∏

P∈Spec(OK)

PordP I,

and we note that all but finitely many of the exponents ordP I are zero.

Proof. We already know from Proposition 4.17 that such a decomposition into a product
of prime ideals exists. So we really need to show the value of each exponent being uniquely
determined.

We pick a particular prime ideal P0, and we start from an initial prime decomposition
with unknown exponents I =

∏
P∈Spec(OK) P

e(P), and we apply ordP0 to the equality with
unknown exponents, and we have:

(4.6) ordP0 I =
∑

P∈Spec(OK)

e(P) ordP0 P = e(P0),

which shows that the exponent e(P0) of the ideal P0 in the product of I into powers of
prime factors is equal to ordP0 I, i.e., it is the order of the prime ideal P0 in the ideal I. �

Lemma 4.21. Let P be a prime ideal in OK. We take it as fact that P ∩ Z is not zero, as
this is a result from algebraic number theory. But P ∩ Z is also a prime ideal of Z, so it is
generated by a prime number p.

Definition 4.22 (Ramification). We consider a prime ideal P in OK , and the natural prime
number p as obtained in Lemma 4.21. We let (p) be the principal ideal generated by p in
the ring of integers OK . We define the ramification index of P to be

e = ordP(p).

If e = ordP(p) ≥ 2, we say that the prime p ramifies in the ring of integers OK .

Definition 4.23 (Degree). We state without proving that the quotient ring OK/P is a finite
field containing Z/pZ. By a well-known result of finite fields, the number of elements in the
field is a power of p, say pf , for some f ≥ 1. Then f is called the degree of the prime ideal
P.

We end with the mention of an important algebraic number theory result that we state
without proof.

Proposition 4.24 (Equation in Ramification, Degree, and Field Dimension). Let p ∈ N be
a prime number and let P1, P2, . . ., Pr be the prime ideals in OK containing the principal
ideal (p) of OK. We recall that [K : Q] = n. Let ei and fi be the ramification index and
degree of each prime ideal Pi, for 1 ≤ i ≤ r.
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By Theorem 4.20, we have (p) = Pe1
1 . . .Per

r . Then,

(4.7)
r∑
i=1

eifi = n.

5. Examples

In this section, we illustrate via concrete examples the concepts of unique factorization
when it exists at the level of ring elements, or at the level of ideals when it fails at the level
of ring elements.

5.1. Ring of Gaussian Integers Z[i]. We start with the ring of Gaussian integers Z[i] in
which unique factorization exists for non-zero ring elements. Indeed, Z[i] is a norm-Euclidean
domain with the norm being N(a + bi) = a2 + b2. This implies that it is a Principal Ideal
Domain (PID), which in turn implies that it is a Unique Factorization Domain (UFD).

The units in this ring are ±1, ±i. In this ring, some rational primes remain prime, as
is the case with odd primes p with p ≡ 3 (mod 4) such as 3, 7, 11, etc.

Other odd rational primes split into distinct prime factors that are conjugate of one an-
other, as is the case with 5 = (2 + i)(2 − i) = (1 − 2i)(1 + 2i), and these factorizations are
unique up to units, e.g., 1 + 2i = i(2− i) and 1− 2i = (−i)(2 + i).

Lastly and interestingly, the rational prime 2 factors as 2 = (1 + i)(1 − i), but we note
that 1− i = i(1 + i), so that the factorization of 2 is in fact 2 = i(1 + i)2, with 1 + i a prime
in Z[i] and i a unit. This is an example of ramification as seen in the context of ideals above.
The rational integer 2 ramifies in Z[i].

In this simple case of a PID and UFD, all ideals are principal by definition of a PID, and
all ideals I and J are related to each other by a relation of the type (α)I = (β)J for some
α, β ∈ Z[i]. Indeed, since Z[i] is a PID, I = (a) for some a ∈ Z[i] and J = (b) for some
b ∈ Z[i], so we can pick α = b and β = a, and we have our desired ideal equality by having
(a)(b) = (a)(b).

We therefore have a single equivalence class among ideals, and the corresponding ideal class
group is the trivial group. This ideal class group being the trivial group is characteristic of
being in a PID, therefore in a UFD.

5.2. Quadratic Imaginary Ring Z[
√
−5]. We have started the paper with an illustrative

example in Equation 1.1 of how unique factorization into primes up to units breaks down in
this ring. We want to show that the theory of ideals that we have developed in this paper
restores unique factorization into primes, except that this will be a factorization of ideals
into prime ideals.
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We start by mentioning a technicality that allows us to use the results of the previous
section. We have developed the previous section on ideal classes and ideal class groups in
the context of a ring of integers OK of an algebraic field K which is a finite extension of Q.

It is a fact that if the algebraic field K is Q[
√
−5], then its ring of integers OQ[

√
−5] is

Z[
√
−5]. This allows us to use the theory developed in the previous section for our ring

Z[
√
−5] of interest. We note that it is not always the case that the ring of integers of an

algebraic field takes this ”nice” form where the ring of integers is simply Z to which we
adjoin the same element

√
−5 that defined the field K = Q[

√
−5] as an extension of Q.

Going back to Equation 1.1, we have:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Noting that the norm of a+ b
√
−5 = a2 + 5b2, with a, b ∈ Z, we see that the equality above

has the equality among norms:

36 = N(6) = N(2) ·N(3) = 4 · 9 = N(1 +
√
−5) ·N(1−

√
−5) = 6 · 6.

Even though 2, 3, 1 +
√
−5, 1−

√
−5 are irreducible in Z[

√
−5], we can see that the norms

4, 9, 6, and 6 are not prime. From a purely intuitive standpoint, the product of norms above
is ”begging for” the existence of ”more primitive objects”, let’s call them p1, p2, p3, p4, such
that we might have

2 = p1 · p2, 3 = p3 · p4, 1 +
√
−5 = p1 · p3, 1−

√
−5 = p2 · p4.

Of course, by the fact that our ring elements 2, 3, 1 +
√
−5, 1−

√
−5 are irreducible, there

are no such objects in the ring itself, especially as the only units of Z[
√
−5] are ±1. However,

this is where the theory of ideals and ideal classes comes in.

We consider the following ideals:

P1 = (2, 1 +
√
−5),

P2 = (2, 1−
√
−5),

P3 = (3, 1 +
√
−5),

P4 = (3, 1−
√
−5),

which are generated by pairs of ring elements of Z[
√
−5].

We make the remark that if we had been in a PID, then each of these ideals generated
by two elements would have been a principal ideal generated by the gcd of these two ele-
ments. So we can think of these ideals that seem to appear out of thin air as ”stand-ins” for
what would have been a principal ideal generated by a gcd.
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We now note that P1 = P2. Indeed, it is sufficient to show that 1 +
√
−5 ∈ P2 and

that 1−
√
−5 ∈ P1. We have:

1 +
√

5 = 2 + (−1)(1−
√

5),

so it is a linear combination of 2 and 1−
√

5 with coefficients in Z, therefore it is an element
of the ideal generated by 2 and 1−

√
−5, i.e., it is an element of P2 = (2, 1−

√
−5). Since

we trivially have 2 ∈ (2, 1−
√
−5), we have shown that

P1 ⊆ P2.

We also have:

1−
√
−5 = 2 + (−1)(1 +

√
−5),

which shows that 1−
√
−5 ∈ P1 = (2, 1 +

√
−5), and subsequently

P2 ⊆ P1.

This completes the proof that

P1 = P2.

We can now verify that we have the following ideal equalities:

P1P2 = (2),

P3P4 = (3),

P1P3 = (1 +
√
−5),

P2P4 = (1−
√
−5).

We only show one of these equalities, leaving the others for the reader to verify. Let us show
that P3P4 = (3). We recall from the arithmetic on ideals that an element of a product of
two ideals is a sum of products of elements of each, i.e.,

x ∈ P3P4 =⇒ x =
∑
i

aibi, with ai ∈ P3, bi ∈ P4,

and

ai ∈ P3 =⇒ ai = a′i(3) + a′′i (1 +
√
−5), with a′i, a

′′
i ∈ Z,

and

bi ∈ P4 =⇒ bi = b′i(3) + b′′i (1−
√
−5), with b′i, b

′′
i ∈ Z,
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so that:

x =
∑
i

aibi

=
∑
i

(
a′i(3) + a′′i (1 +

√
−5)

) (
b′i(3) + b′′i (1−

√
−5)

)
=
∑
i

9a′ib
′
i + 3a′ib

′′
i (1−

√
−5) + 3a′′i b

′i(1 +
√
−5) + 6a′′i b

′′
i

= 3
[
(3a′ib

′
i + a′ib

′′
i + a′′i b

′
i + 2a′′i b

′′
i ) + (a′′i b

′i− a′ib′′i )
√
−5
]

= 3(α + β
√
−5) with α, β ∈ Z

∈ (3), where (3) is the ideal generated by 3 in Z[
√
−5].

We have therefore shown that

P3P4 ⊆ (3).

We now note that:

3 = 3 · 3− (1 +
√
−5)(1−

√
−5) = 9− 6 = a1b1 − a2b2,

with

a1 = 3 ∈ P3, a2 = 3 ∈ P4, b1 = 1 +
√
−5 ∈ P3, b2 = 1−

√
−5 ∈ P4.

This shows that:

3 ∈ P3P4, i.e., (3) ⊆ P3P4.

We have therefore shown that

(3) = P3P4.

Having shown how to obtain unique factorization of ideals into prime ideals through the
example above, we gather a few relevant results in Z[

√
−5] before concluding the section

with a few directions of further interest in other rings.

We do not show it here but the class number of the field Q[
√
−5] is 2. The proofs of

this result rely on defining norms of ideals, showing that all ideal classes are represented
by some finite set of integral ideals of bounded norm, and on using a pigeonhole principle
to argue that all ideals, whether integral or fractional, are represented in this finite set of
classes (in our case 2).

In our example of the ring Z[
√
−5], the ideal class group has order 2, so it is isomorphic to

Z/2Z, and there is simply one class of principal ideals, and another class of non-principal
ideals. According to the only possible multiplication table for a group of order 2, the prod-
uct of a principal ideal and a non-principal ideal is non-principal, and the product of two
non-principal ideals is principal.

Some examples of representatives of the two classes are as follows.
The principal class:

C1 ⊇
{

(1) = Z[
√
−5], (

√
−5), (2) = P2

2, P2P3 = (1 +
√
−5), P2P4 = (1−

√
−5)

}
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The non-principal class:

C2 ⊇
{

(2, 1 +
√
−5) = P2, (3, 1 +

√
−5) = P3, (3, 1−

√
−5) = P4

}
One can check that the group multiplication table for the two classes is the only one possible
for a group that is isomorphic to Z/2Z, i.e.:

Ideal Class C1 C2
C1 C1 C2
C2 C2 C1

We end this sub-section by listing a few results relative to the ideals generated by integral
primes in the ring Z[

√
−5]. We have the following:

• The ideal (2) ramifies because (2) = P2
1 = P2

2.

• The ideal (5) ramifies because (5) =
(√
−5
)2

.
• For p ≡ 11, 13, 17, 19 (mod 20), the ideal (p) remains inert, i.e., it is prime in
Z[
√
−5].

• For p ≡ 1, 3, 7, 9 (mod 20), the ideal (p) splits, i.e., it is the product of distinct
ideals.

5.3. More General Rings. There are other rings where the group order is higher than 2
and the group multiplication table more elaborate. In such rings where the order of elements
varies, we might have some some non-principal ideal classes whose product is a principal ideal,
and others where the product is still non-principal, as there are several non-principal classes
in the ideal class group.

Rings such as Z[
√
−23] or Z[1+

√
−163
2

] present such more elaborate structure between ideal
classes, due to having ideal class groups of higher order than 2, thus more complex group
multiplication tables. Furthermore, one can look at non-imaginary quadratic rings for other
directions of exploration.

In the course of researching this topic, one may come across concepts of algebraic num-
ber theory that shed new light on quadratic form concepts that we have covered in class.
In particular, norms and discriminants are obtained in the context of operators on finitely
generated modules and determinants or traces of their associated matrices in given bases of
the modules.
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