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1. Application of Number Theory

Cryptography is the field of study of the methods of secure communication. This security
is forged by encrypting information via different mechanisms.

1.1. Introduction. A cryptosystem is a series of algorithms to implement a particular
security service for secret communication over public channels in the crypto group, the
group of people who are attempting to communicate in secret. A public channel is just
any communication medium that can be used to transmit and receive messages. For example,
the internet can be thought of as a public channel.

Now suppose Alice wants to send Bob a message, but doesn’t want Claire to know what
she is sending. She must secure her message in a a crypto cell, a unit of the cryptosystem
where Alice and Bob can communicate. Alice secures the message through an algorithm,
called encryption, and Bob uses the same algorithm in reverse to discover the original
message, known as decryption.

1.2. Cæsar Cipher. A simple method of encrypting a message is through the Cæsar cipher
which shifts the letters of each word in the message by the same amount in the alphabet.

Example. The ciphered message WKLU LU DQ HQFUBSWHG THVVLJH can be shifted
3 letters backward to get the original message of THIS IS AN ENCRYPTED MESSAGE.

The problem with the Cæsar cipher is that it is very easy to decipher. There are exactly
26 different ciphers, coming from the 26 letters in the alphabet. Thus, it would be relatively
easy to decipher the message, it is a matter of trial and error before revealing the original
message.

1.3. Substitution. Another form of encryption is the Substitution cipher, where every let-
ter is replaced by another letter in the alphabet in the encrypted message. This exponen-
tially increases the security, as there are now 26! different ciphers. This is an example of a
monoalphabetic cipher.

2. The Rivest-Shamir-Adleman (RSA) Cryptosystem

Definition 2.1 (RSA). An asymmetric encryption algorithm that uses a key pair to math-
ematically encrypt and decrypt data.

In order to understand how RSA works, we must acknowledge that it is difficult to factor
the product of large primes, as this is the core concept RSA is built upon. RSA requires both
a public and private key. The public key, represented by the integers n and e can be known
by everyone and is used for encrypting messages. By using the private key, represented by
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the integer d we can decrypt the messages encrypted by the public key in a short span of
time. RSA attempts to find large e, d and n so that

(me)d ≡ m (mod n). (2.1)

2.1. Key Generation.

Definition 2.2 (Carmichael’s Function). λ(n) is the smallest positive integer m such that
am ≡ 1 (mod n) where a and n are relatively prime.

Suppose we have two large primes p and q. First, calculate n = pq and λ(n). Note
that since p and q are coprime, λ(n) = lcm(λ(p), λ(q)) = lcm(p − 1, q − 1). lcm(p − 1, q −
1) can be easily calculated by using the identity ab =(lcm(a, b))(gcd(a, b)) or through the
Euclidean Algorithm. The value of λ(n) is not disclosed.

There must be some integer e such that 2 < e < λ(n) and gcd(e, λ(n)) = 1. This e is part
of the public key. The most common value for e is 216 + 1 in the name of efficiency. The
smallest possible value while still maintaining speed would be e = 3.

Definition 2.3 (Bit Length). The bit length of a number, l(n) is the number of binary
digits (also known as bits) of the number. It defined to be

l(n) = ⌈log2n+ 1⌉. (2.2)

Definition 2.4 (Hamming Weight). The Hamming weight it is the number of non-zero
digits of a number. Alternatively, is the sum of the digits of the binary representation of a
number.

For more efficient encryption, values of e that have a small bit length and lower Hamming
weight are used. The next step is determining d, which is the modular multiplicative inverse
of e, or in other words

d ≡ e−1 (mod λ(n)). (2.3)

The value d is usually determined through the extended Euclidean algorithm and is kept as
part of the private key. Note that p, q, and λ(n) must also be kept secret in order to preserve
the security of d.

Remark 2.5. The Euler totient function ϕ(n) = (p− 1)(q − 1) could also be used instead of
the Carmichael function λ(n) to calculate d (this was used in the original RSA paper). The
modular congruence remains true because ϕ(n) is always divisible by λ(n).

Suppose that Bob wants to send information to Alice. If they decide to use RSA, Bob
must know Alice’s public key to encrypt the message, and Alice must use her private key to
decrypt the message.

To enable Bob to send his encrypted messages, Alice transmits her public key (n, e) to Bob
via a reliable, but not necessarily secret, route. Alice’s private key (d) is never distributed.

Example. Alice wants to send Bob an encrypted message. Suppose she chooses 2 primes
p = 43 and q = 67 for the crypto cell:

(1) Compute n = pq = 2881
(2) Compute λ(2881) =lcm(42, 66) = 462
(3) Set e to an arbitrary value such as 19 such that 2 < 19 < 462 and gcd(19, 462) = 1.
(4) Compute d ≡ 19−1 ≡ 73 (mod 462) so d = 73
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Therefore, the public key will be (n = 2881, e = 19) and the private key is (n = 2881, d =
73).

Now suppose Alice wants to send Bob the encrypted value m = 45. To encrypt this value
using our new function, she would send

c = 4519 (mod 2881) = 161

to Bob. Bob having received 161 needs to know the original number:

m = 16173 (mod 2881) = 45.

Remark 2.6. In real-life situations, much larger primes will be used to

2.2. Signing. Suppose Bob supposedly receives an encrypted message from Alice. He has
no way of knowing if the message is truly from Alice, or someone else since anyone can access
the public key. To verify that Alice is truly the one sending the message, she must sign the
message by using a hash algorithm. This confirms that Alice is truly the individual sending
the message.

3. The Diffie-Hellman Key Exchange and ElGamal Encryption

3.1. The Diffie-Hellamn Key Exchange. The Diffie-Hellamn key exchange protocol that
allows two parties to to privately share information over an insecure channel.The purpose is
to generate a key through repeated exchange of information. As a result, this key will be
created from several different pieces.

3.1.1. Key Generation. Suppose Alice and Bob have some prime p. Both independently,
Alice chooses some number a and Bob chooses some number b. Alice now computes ga

(mod p) and Bob computes gb (mod p) where g is the primitive root of the multiplicative
group F×

p . Alice sends ga (mod p) directly to Bob, while Bob publicly sends gb (mod p).

Both can now calculate (ga)b ≡ gab (mod p), which is the key.

Example. Suppose Alice wants to generate a key with Bob. Let p = 31. The smallest
primitive root of 31 is 3, therefore g = 3. Now Alice chooses a = 22. She computes 322
(mod 31), which is 14. Bob calculates 3b (mod 31) and gets 24. Therefore, the key is 28:
(3b)a ≡ 24a ≡ 28 (mod 31). For reference, Bob chose b = 13.

Remark 3.1. In real-world scenarios, p will be must larger to improve security. If Claire
wanted to find out the key, she has to find gn (mod p), where 0 ≤ n ≤ p− 2.

3.2. The Discrete Logarithm Problem. Over Z, if we are given g and gn, we can easily
find n through a logarithm. Now suppose we want to work over Fp making it significantly
more difficult to find n. If g and gn are elements of F×

p , n is called the discrete logarithm
to base g of n. Generalizing, if we have a cyclic group G with generator g n is the discrete
logarithm to base g of n.

Definition 3.2 (Discrete Logarithm Problem). Given a cyclic group G, a generator g, and
some x ∈ G, find n such that x = gn.

There is a similar problem that arises in the Diffie-Hellman key exchange protocol:

Definition 3.3 (Diffie-Hellman Problem). Given a cyclic group G, a generator g, and both
ga, gb ∈ G, compute gab.

It is mostly believed that there is no such algorithm that solves either of these problems,
and no such algorithm as been found or proposed.
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3.3. ElGamal Encryption. ElGamal encryption is a popular method of constructing a
cryptosystem with the Diffie-Hellman key exchange.

Suppose Bob wants to send a message to Alice. Alice will have to first generate a key. She
choose some prime p, generator g of F×

p , and 0 ≤ a ≤ p− 2. She then computes ga (mod p).
Let us denote that value s. s, g, and p become part of the public key, while a is kept private.
Bob chooses some 0 ≤ b ≤ p − 2, and computes sb (mod p) which we will denote r. The
message he wants to send must be converted into some element of F×

p

4. Elliptic Curve Cryptography

Definition 4.1 (Elliptic Curve). An elliptic curve over a finite field is of the (Weierstrass
normal) form y2 = x3 + ax + b, given 4a3 + 27b2 ̸= 0 and an additional point at infinity
denoted ∞.

Elliptic curves are powerful tools in cryptography because there is an Abelian Group on
the elliptic curve with the point at infinity as the identity element and the points of the
elliptic curve as the elements of the group. The point at infinity lies on all vertical lines (of
the form x = k) and no non-vertical lines.
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Figure 1. Elliptic curve of the form y2 = f(x)

Suppose we have two points P = (x1, y1) and Q = (x2, y2) on the elliptic curve y2 =
x3 + ax + b. Suppose we want to add these two points P + Q. The slope of the line
connecting the two points would be

m =
y2 − y1
x2 − x1

and intercept

c = y1 −mx1.
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This secant line intersects the elliptic curve at another point (x2, y3) which must satisfy

y2 = x3 + ax+ b

and

y = mx+ c.

Plugging in y = mx+ c into y2 = x3 + ax+ b, we get (mx+ c)2 = x3 + ax+ b. Expanding,
rearranging and using Vieta’s formulas, we find that x3 = m2−x1−x2 and y3 = mx3+ c.
The sum P +Q is the reflection of (x3, y3) over the x-axis: (x3,−y3).

Using the same technique, we can find a formula for the doubling of a point P (adding it
to itself). Since in this case x1 = x2 and y1 = y2, we must use calculus to find that the slope
of the tangent line at P is

m =
3x2

1 + a

2y1
. (4.1)

Furthermore, we can also find that the x-coordinate of the point 2P is

x3 =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
(4.2)

and the y-coordinate is one of the square roots of x3.

Remark 4.2. Adding two integer points need not produce another integer point.

4.1. Elliptic Curves over Finite Fields. In the realm of cryptography, what interests us
is the elliptic curves over finite fields, primarily Fp denoted E(Fp) (Fp = Z/pZ. Note that
the points of E(Fp) form a group. Note that we still have the condition that 4a3 +27b2 ̸= 0,
which is replaced by the congruence

4a3 + 27b2 ̸≡ 0 (mod p)

since it is over a finite field. It is relatively simple to count the number of integer points
over finite fields, since we can just plug in a finite number of values. Easier is having the
SageMath software do it for us. In E(Fp), we should have a maximum of p points and
another point at ∞. But, further analysis leads to a more precise bound.

Theorem 4.3 (Hasse-Weil Bound). Let E be an elliptic curve over Fp and let #E(Fp) be
the number of points in E(Fp). Then

|#E(Fp)− (p+ 1)| ≤ 2
√
p. (4.3)

It turns out that sometimes E(Fp) will be a cyclic group of order n. This makes E very
useful for elliptic curve versions of some protocols.

Unlike prior protocols, elliptic curves had an assumption that finding the discrete loga-
rithm of an elliptic curve element from a base point is impractical. This became known as
the ”elliptic curve discrete logarithm problem” and threatened the security of elliptic curve
cryptography. Elliptic curve cryptography depends on the ability to compute a point multi-
plication on the elliptic curve and the difficulty of seeking the multiplicand. This results in
smaller key sizes, as less storage and transmission can provide an equal level of security.
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