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1. Introduction

How can we determine if

785963102379428822376694789446897396207498568951

is prime?1

To perform such a calculation, we should use a primality test that is both accurate and time-efficient for
large candidates n. Accordingly, this paper will compare characteristics (accuracy, time complexity, issues,
variants) of a range of algorithms. Furthermore, it will discuss the applications in cryptography, specifically
in generating public keys.

Note that throughout this document, FLT refers to Fermat’s Little Theorem.

1.1. Brute Force: Trial Division. The most direct approach is to simply test for divisibility by all primes
less than or equal to

√
n. For large n, we can use a prime number sieve to find primes between 1 and ⌊

√
n⌋.

Essentially, this involves removing the factors of all primes up to
√

⌊
√
n⌋ from the list, leaving only primes.

If this upper bound is also large, we apply the sieve again (and so on).

Using the sieve and a fast (Schönhage-Strassen) multiplication algorithm, the time complexity becomes

O(
√
N · logN/ log logN), thus inefficient for large N .[1] Using this as a reference for comparison, we seek

alternatives.

2. Fermat’s Little Theorem

It would make sense to use a theorem involving prime numbers in relation to modular congruences, as
we would then have a definite classification system for all numbers. Clearly, exponential/factorial running
time (e.g. Wilson’s theorem) must be avoided, as we are mostly testing large n. Ideally, we should achieve
O((log n)k) running time, i.e. terrible for small n but optimal for large n.

Fermat’s Little Theorem states that ap ≡ a (mod p) over all integers a for some prime p. This does not
necessarily imply that all p = n satisfying this condition are prime (we will discuss “liar” numbers later);
however, if some n does not satisfy this test, it is certainly composite. Still, we would like to make the test
as accurate as possible for determining primality.

Suppose (for candidate n) we randomly select an integral value of a ∈ [0, n− 1] and compare an and a
modulo n. Computing an (mod n) is a time-consuming procedure, but can be done more efficiently with
modular exponentiation techniques:

(1) Find p as a sum of powers of 2.

(2) Use the fact that a2
k+1 ≡ (a2

k

(mod p))2 (mod p) to find residues modulo p for all 2k in the repre-
sentation of p. Multiply the residues and take modulo p.

We require a time complexity of O((log n)2) (maximum of log2 n multiplications, each of which is squared)
over one value of a.

1For the significance of this number, see section 5.2.1.
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2.1. Issues. As aforementioned, we can determine with certainty that a number not satisfying FLT for this
value of a is definitely composite. However, a number of issues allow several composite numbers to pass as
primes.

We will address each issue separately:

(1) Most obviously, n | 0n for any n. We can make a similar observation for a = 1 and a ≡ −1 (mod n)
(the latter satisfies FLT whenever n is odd, but we are only concerned with odd numbers here. There
is no value in testing n = 2. This restricts the interval for a to [2, p− 2].

(2) Even excluding these values of a, there are some composite “pseudoprimes” for certain a (such a
are known as Fermat “liars”). However, most pseudoprimes have corresponding Fermat “witnesses”
(values of a such that n does not satisfy FLT). So, we account for such composite n by testing with
all values of a on the interval. Note that this increases the time complexity to O(k(log n)2), where
k is the number of iterations.

(3) Some of the pseudoprimes in (2), such as n = 561, do not have any Fermat “witnesses”. These are
known as the Carmichael numbers, and require their own subsection.

2.2. Carmichael Numbers. First, we can better define them as follows:

Definition 2.1. The increasing sequence ck of (distinct) Carmichael numbers satisfies

ack ≡ a (mod ck)

for all integers a. (For example, c1 = 561.)

The basic Fermat primality test cannot account for the Carmichael numbers. However, we can make a
few statements about their characteristics and distribution:

Theorem 2.1 (Korselt’s Criterion). A positive composite integer n is a Carmichael number iff n is square-
free and p− 1 | n− 1 for prime divisors p of n.

Proof. It follows from Fermat’s Little Theorem that if n− 1 = k(p− 1) for some positive integer k, then (for
some integer a such that gcd(a, n) = 1):

an−1 ≡ (ap−1)k ≡ 1k ≡ 1 (mod p) → an ≡ a (mod p).
Expressing n as

∏
pi:

api−1 ≡ an−1 ≡ 1 (mod pi) → an ≡ a (mod pi)
for all i, because n ≡ 0 (mod pi). Thus, a

n ≡ a (mod p ·
∏

pi) → an ≡ a (mod n). Note that this can be
generalized to all integers a, as the final conclusion is independent of the ap−1 ≡ 1 (mod n) formula.

□

Theorem 2.2. There are infinitely many Carmichael numbers. [2]

We have also been able to accurately describe the distribution of these numbers. We denote #(Carmichael
numbers less than n) = Cn. In 2021, Daniel Larsen proved a definite lower bound on Cn. We also have an
upper bound (Pomerance, [3]):

Cn ≤ n1−(1+o(1)) log log logn/ log logn

As n → ∞, this bound grows at an increasingly slower rate, indicating the scarcity of Carmichael numbers
for large n. Thus, our modified FLT primality test has a high (but not 100%) accuracy.

3. Other Randomized Algorithms

3.1. Miller-Rabin. Until now, all of the algorithms we have discussed are unable to account for Carmichael
numbers. The Miller-Rabin primality test overcomes this limitation, and is immune to most (but not all) of
these.

The Miller-Rabin test makes use of the following statement, inspired by Euler’s criterion:

Theorem 3.1. The only solutions to x2 ≡ 1 (mod n) are ±1 iff n is prime.
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Proof. We have n | x2 − 1 = (x− 1)(x+ 1). If n is prime, it must divide exactly one of the two expressions
(unless n = 2, but the statement is still valid because 1 is the only nonzero residue modulo 2). Thus x ≡ ±1
(mod n). If n is composite, we can split up the prime factors and let some of them divide x− 1 while others
divide x+ 1. The Chinese Remainder Theorem guarantees a solution modulo n for every such split. □

Notice that we can obtain the same residue modulo p with Fermat’s Little Theorem. Taking advantage
of this, we can state that a(p−1)/2 ≡ ±1 (mod p) and use this as a “filter” to check all n that pass the FLT
test we proposed in 2.1. We can divide the exponent by 2 for as many times as p−1

2k
is still an integer, so we

will test for all such k to increase our degree of certainty. Note that if the residue of a term with exponent
k is −1 (mod p), the term with exponent k + 1 (if it exists) is not congruent to ±1 (mod p). However, we
must have the former in order for the latter to occur. Now, we can state the best algorithm so far:

Theorem 3.2 (Miller-Rabin). Given (odd) candidate n, select a random integer a ∈ [2, n− 2]. Then, n is
“prime” if:

(i) (a, n) satisfy Fermat’s Little Theorem.
(ii) Given the sequence sk = p−1

2k
for integers 1 ≤ k ≤ ν2(n− 1)2, either all ask ≡ 1 (mod n), or the

first term not congruent to 1 (mod n) has residue −1 (mod n). (Subsequent terms, if they exist, can
have other residues.)

It is very unlikely that a Carmichael number passes this test. In fact, it has been proven that this
test successfully identifies more than 3

4 (often much more) Carmichael numbers as composite. Running it
multiple times with different values of a gives an even higher (essentially 100%) probability of identifying
primes. However, this increases the running time to O(k log3(n)) (for k trials). This can be shrunk to
O(k log2(n) log log n) using multiplication algorithms outside of this handout’s scope.

3.2. Pocklington-Lehmer Test.

3.2.1. Pocklington criterion.

Theorem 3.3 (Pocklington). Given relatively prime integers a,N that satisfy FLT, prime p | N − 1 such

that p >
√
N − 1, N is prime if

gcd(a(N−1)/p − 1, N) = 1

Proof. Again, this is a direct result of FLT. We will prove by contradiction; if N is composite, it must have a
prime factor q ≤

√
N . Given gcd(N−1, q−1) = gcd(p, q−1) = 1 and prime q, there must exist multiplicative

inverse u of p modulo q − 1 such that q | up, meaning

aup ≡ a (mod q)

Recalling that q | N , FLT gives aN−1 ≡ 1 (mod q). We would like to obtain a congruence with a(N−1)/p,
so we can manipulate to obtain

(ap)(N−1)/p ≡ (ap)(N−1)/p ≡ a(N−1)/p ≡ 1 (mod q)

Thus q | a(N−1)/p − 1. But q | N , so gcd ≥ q, and we have a contradiction to the statement that these
two are relatively prime. [4] □

Along with Fermat’s Little Theorem, this leads us to the following:

Theorem 3.4 (Generalized Pocklington Test). Now, let N − 1 = A ·B, where gcd(A,B) = 1, A >
√
N , the

prime factorization of A is known, but the factorization of B is not necessarily known.
Then, N is prime if, for each prime factor p | A, there exists an integer ap so that

aN−1
p ≡ 1 (mod N)

and

gcd(a(N−1)/p
p − 1, N) = 1.

When a = 2, we are led to a relation that will be expanded upon in the next section.

2Here, νp(n) denotes the p-adic valuation of n, i.e. the exponent of the largest power of p that divides n.
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3.3. Primes of the Form 2n − 1. Let us now consider a special case. Suppose we wanted to determine
if a Mersenne number Mn = 2n − 1 is prime. If we think of Mn as a geometric sequence of n terms, i.e.
20 + 21 + . . . 2n−1, it is clear that if n is composite, Mp | Mn for all prime factors p. Thus we only need to
test Mp.

There exists a definite algorithm to determine the primality of these numbers. An improvised version is
stated below:

Theorem 3.5 (Lucas-Lehmer). For some odd prime p, Mp is prime iff Mp | sp−2, where si =

{
4 i = 0

s2i−1 − 2 i ̸= 0
.

A proof for this that uses basic principles of quadratic reciprocity and clever manipulation can be found
at [5]. The fastest version of the Lucas-Lehmer test has time complexity O(n2 log n) for the nth Mersenne
number. This is great, because n is the exponent of our number. One can then find extremely large primes of
this form fairly quickly. The Lucas-Lehmer test is thus used to find primes larger than those ever discovered
before (the record is 282,589,933 − 1!).

3.4. Elliptic Curve Primality Proving. We can take inspiration from the Pocklington criterion (sect 2.3)
to state the following:

Proposition 3.1. Let E : y2 = x3 +Ax+B be an elliptic curve, which we will take over the group Z/nZ.
If (i) there exists a prime q > ( 4

√
N + 1)2 such that q | m, (ii) mP = 0 and (iii) P · m

q is defined and not

zero, then n is prime.

Proof. Suppose, by contradiction, that n is composite. Then, n has a prime factor p <
√
n. Consider the

finite group E(Fp). The Hasse-Weil bound for elliptic curves gives us that

| #E(Fp)− (p+ 1) |≤ 2
√
p

Thus, the upper bound of p can be found by setting #E(Fp) ≥ p+ 1 and solving:

#E(Fp) ≤ p+ 2
√
p+ 1

The RHS can be rewritten as (
√
p+1)2. Since p <

√
n, (

√
p+1)2 < ( 4

√
p+1)2, which in turn is less than

q. But q is prime, so gcd(#E(Fp), q) = 1 and q has an inverse modulo #E(Fp).

Evaluating statement (iii) modulo p,

(m/q)P ≡ qq−1 · (m/q)P ≡ mPq−1 (mod p)

Statement (ii), mP = 0, then gives us (if true) that (m/q)P ≡ 0 (mod p). However, if we repeated the
same procedure with p instead of n, we would obtain from statement (iii) that (m/q)P ̸≡ 0 (mod p), a
contradiction.

□

It may still seem strange to use elliptic curves here, but it turns out that this test is extremely time-efficient
for

3.5. Alternative Approaches.

(1) The AKS primality test relies on the following statement:

Theorem 3.6 (AKS). An integer n is prime if n | (x− 1)n − (xn − 1).

AKS is thought to be 100% accurate[7] and is one of the most frequently used tests today. Evi-
dently, though, it is extremely slow (time complexity O(n6)) for large n. Its speed can be increased
with the similar congruence

(x+ a)n − (xn + a) ≡ 0 (mod xr − 1, n)

for some r.[7]
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(2) The Baillie-PSW primality test is another highly accurate algorithm, and has the additional ad-
vantage of being time-efficient for extremely large n. It is essentially a combination of the Fermat
test and Lucas-Lehmer test. Though not proven, no composite number has been shown to pass
Baillie-PSW.

(3) Next, we introduce the following:

Definition 3.1. The nth homogeneous cyclotomic polynomial ϕn(x, y) is the unique irreducible factor
of xn − yn with degree ϕ(n).

ϕ3 = x3−y3

x−y = x2+xy+ y2 is one such polynomial of interest to us. Primes of this form are called

cuban primes, and the case x = y + 1 (so ϕ3 = 3y2 + 3y + 1) has led to the discovery/proof of a
3-million digit prime with y = 33304301 − 1.3

4. Application in Cryptography

4.1. RSA Key Cipher. We will illustrate the idea behind RSA with an example. Suppose Alice wishes
to encrypt the message “EULER” and send it to Bob. Of course, Alice must first convert to a numeric
system. For simplicity, we will use the residues modulo 26 and assign the residue n to the n+ 1th letter of
the alphabet (since we are only using letters). This gives us 4|20|11|4|17.

Let us only consider the first character E → 4. Before discussing encryption, we must introduce a few
ideas:

Definition 4.1. The Carmichael totient function λ(n) is defined as the smallest positive integer m such
that, for all a, am ≡ 1 (mod n).

Proposition 4.1. λ(n) for n = pe11 · pe22 · . . . equals lcm (λ(pe11 ), λ(pe22 ), . . . ).

Proposition 4.2. For prime p, λ(p) = ϕ(p) = p− 1.

4.1.1. Encryption.

(1) Select two (extremely large) primes p and q, and compute n = pq. For the sake of simplicity, though,
we will use p = 5 and q = 11 so that n = 55. Note that n must be larger than the numeric
assignments of all characters for RSA to work.

(2) Choose a positive integer e < λ(n) such that gcd(e, λ(n)) = gcd(e, lcm(p − 1, q − 1)) = 1. Here,
λ(n) = 20, so let e = 17.

(3) Alice thus creates a public key (n, e) that Bob is aware of.
(4) Encrypt with the formula c(m) = me (mod n). In our case, m = 4, e = 17, n = 55, so we have

c(m) = 49. Similarly, c(m) can be generated for “U”, “L”, and “R”.

4.1.2. Decryption. Now, Bob has the public key (n, e) = (55, 17) and must decrypt the ciphertext c = 49.

First, we need the private key (n, d), where d = e−1 (mod λ(n)) (= 13 for this scenario). Then, the
plaintext m is calculated using the formula m(c) = cd (mod n) → 4913 (mod 55) = 4, as desired.

4.1.3. Generating n. In practice, p and q are several tens (sometimes hundreds) of orders of magnitude larger
than the values we selected. Its creators also suggested [6] that the primes be a few orders of magnitude
apart, so that λ(n) = lcm(p − 1, q − 1) is usually larger for randomly-generated primes, thus allowing e to
take on more values.

Primality testing algorithms such as those discussed in this handout are used in generating these primes.
Suppose, for example, that we want to select p and q such that ⌊log p⌋ = 100 and ⌊log q⌋ = 96. We might use
a prime number sieve to remove multiples of the first few primes from candidates for p and q, and then use
a fast primality test with high certainty (such as Miller-Rabin) to test the primality of randomly-generated
numbers from the remaining candidates.

3See PrimePages 136214.
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4.2. Diffie-Hellman Key Exchange. This is similar to (and actually preceded) RSA, except that the
same key is used for both encryption and decryption. Diffie-Hellman can also be used with more than two
parties, but we will consider the simplest case.

Suppose Alice and Bob each have two keys (public and private). Bob receives Alice’s public key and vice
versa, so that each person has their own private key and the other person’s public key. Then, both are able
to generate the same secret key using the following algorithm:

(1) Let α, β respectively be the private keys of Alice and Bob. Let a, b respectively be their public keys.
Both people know a common base g and a prime modulus p, such that a = gα (mod p) and b = gβ

(mod p).
(2) Alice computes a secret key s = bα (mod p). Bob finds the same secret key with aβ (mod p). This

works because of the following rule in modular arithmetic:

(gα (mod p))β (mod p) = (gβ (mod p))α (mod p)

→ (a)β (mod p) = (b)α (mod p)

Observe that all of the calculations are dependent on the private keys, thus preventing potential attackers
from finding s. To keep this safe from a “brute force” attack (manually testing residues modulo p), the value
of p must be sufficiently large. Hence, we require primality testing algorithms to use on large, randomly-
generated n.

4.2.1. Elliptic Curve Diffie-Hellman. (ECDH) To make this cipher even stronger, we can introduce elliptic
curves.

Consider an elliptic curve E : y2 = x3+Ax+B taken over the finite field Fp. Also, consider a “generator”
point G ∈ E(Fp) with order n (i.e. the integer such that nG = ∞). Now, we can assign Alice private key
α : 1 ≤ α ≤ n− 1 and Bob private key β : 1 ≤ β ≤ n− 1.

Alice now computes the point a = αG and makes this public. Bob does the same with b = βG. Both
Alice and Bob are now able to find the secret point P = αβG by multiplying the other person’s public point
with their private key.

Division on an elliptic curve is far more tedious than modular arithmetic, especially when p is large. As
an example, Microsoft used ECDH for their Digital Rights Management service (used for many years to
enforce copyright on audio/video content) with p = 0x89abcdef012345672718281831415926141424f716.

Note that the base-10 representation of p is the number we mentioned in the introduction!
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