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Abstract. In this paper we prove a theorem by J. Silverman which states that

if the orbit of a rational point under a rational function φ contains infinitely
many integers and deg(φ) ≥ 2, then some iterate of φ is a polynomial. First, we

introduce some background material about the dynamics of complex functions,

focusing mainly on rational maps. We then introduce some important results
on Diophantine approximation which are used to prove a special case of Siegel’s

theorem on integral points. Finally, this is used to study the integral points

in the orbits of rational functions.

1. Introduction

Suppose that S is a set and φ : S → S is a function from S to itself. We define
the nth iterate of φ as

φn = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

,

where φ0 is the identify map. We can think of φ as describing a discrete time
evolution of points in S. For this reason, we make the following definition.

Definition 1. A (discrete) dynamical system is an ordered pair (S, φ), where S is
a set and φ : S → S is a function.

We now classify points based on how they behave after applying φ to them
repeatedly.

Definition 2. If (S, φ) is a dynamical system, then the orbit of an element s ∈ S
is the set

Oφ(s) = {s, φ(s), φ2(s), . . . }.
Definition 3. We say that an element s ∈ S is wandering if Oφ(s) is infinite,
preperiodic if Oφ(s) is finite, and periodic if φn(s) = s for some integer n > 0.
We also say that an element s ∈ S is a fixed point if φ(s) = s, or equivalently,
Oφ(s) = {s}.

Of course, any periodic point is also preperiodic, but the converse does not
necessarily hold unless φ is injective.

Notation 4. The sets of preperiodic and periodic points of φ are denoted by PrePer(φ, S)
and Per(φ, S), respectively.

Example 5. Let φ : F13 → F13 denote the map

φ(z) = z2 + 1.

Then, (Fp, φ) is a dynamical system. Figure 1 illustrates this system. Since F13 is
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Figure 1. The action of φ(z) = z2 + 1 on F13.

finite, clearly all points are preperiodic, so PrePer(φ, S) = F13. From Figure 1 we
see that 4 and 10 are the fixed points and

Per(φ,F13) = {0, 1, 2, 4, 5, 10}
The points 0, 1, 2 and 5 have period 4, while 4 and 10 have period 1.

In this paper we will be mostly concerned with the dynamics of rational functions,
and in particular, integral points in the orbits of rational functions. We note that if
φ is a polynomial with integer coefficients, then clearly there are rational numbers
α such that the orbit Oφ(α) contains infinitely many integers (for example, any
integer satisfies this). In fact, this is true if any iterate of φ is a polynomial, i.e. φn

is an integer polynomial for some integer n ≥ 1. The goal of this paper is to establish
an interesting partial converse to this: if φ is a rational function of degree at least 2,
and there exists some rational number α such that Oφ(α) contains infinitely many
integers, then some iterate of φ is a polynomial with rational coefficients. This does
not give a complete characterization of the rational functions which admit orbits of
rational points containing infinitely many integers, since a polynomial with rational
coefficients might not admit orbits of rational points containing infinitely many
integers, as the following example demonstrates.

Example 6. Let φ : Q → Q denote the map

φ(z) =
1

2
z2 + 1.

Then (Q, φ) is a dynamical system. We note that if φ(z) is an integer, then 1
2z

2

must be an integer and thus z2 must be an even integer. It follows that φ(z) ∈ Z if
and only if z is an even integer. Thus, if α is a non-integer rational number, then

Oφ(α) ∩ Z = ∅,
and if α is an odd integer then

Oφ(α) ∩ Z = {α}.
If α is an even integer, then 1

2α
2 is even, so φ(α) = 1

2α
2 + 1 is odd. It follows that

φ2(α) is not an integer and hence

Oφ(α) ∩ Z = {α,φ(α)}.
In particular, the orbit of any α ∈ Q contains finitely many integers.

The theorems and proofs in this paper are mostly based off those in [5] and [1].
We start by studying rational functions as self-maps of the complex projective line.
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2. Rational Functions of the Complex Projective Line

We define a rational function φ as a function of the form φ(z) = F (z)/G(z),
where F and G are polynomials and have no common root. If the coefficients of
F and G are complex then we write φ(z) ∈ C(z). In the special case where these
coefficients are required to be rational, we will write φ(z) ∈ Q(z). We would like to
study the dynamics of these rational functions. However, φ is not quite a self-map
of C, since the denominator G(z) is not necessarily nonzero. For this reason, we
add an extra point at infinity, denoted ∞, and we define

φ(z) = ∞
if G(z) = 0. These are the poles of φ. Further, we define

φ(∞) = lim
z→∞

F (z)

G(z)
.

With these definitions, φ is now a self-map of C ∪ {∞}, and (C ∪ {∞}, φ) is a
dynamical system. The set C ∪ {∞} is called the extended complex plane.

We can put a topology on this set as follows. We say a set U ⊂ C∪{∞} is open
if U is either an open subset of C or U = C∪{∞}−K, where K is some closed and
bounded subset of C. This is known as the one-point-compactification of C. As the
name suggests, it is a compact space. In fact, it is homeomorphic to the sphere S2

via stereographic projection. For more details, see a textbook on complex analysis,
for example [4].

C ∪ {∞} is also homeomorphic to the set of all 1-dimensional subspaces of the
complex vector space C2, which is denoted P1(C) and called the complex projective
line. If we define the equivalence relation ∼ by (z, w) ∼ (z′, w′) if and only if
there is some nonzero λ ∈ C such that (z′, w′) = (λz, λw), then P1(C) is the set
of equivalence classes of vectors (z, w) ∈ C2 − {0, 0}. The equivalence class of
(z, w) is denoted [z, w], which is called the homogeneous coordinates, or projective
coordinates, of a point in P1(C). We define π : C2 → P1(C) by the projection map
π(x, y) = [x, y]. This induces a topology on P1(C) called the quotient topology. A
set U ⊂ P1(C) is defined to be open in the quotient topology if and only if the
preimage π−1(U) is open in C2.

Now, the map C → C2 defined by z → (z, 1) is an embedding, and we can
compose this with the projection map π to obtain an embedding C → P1(C). The
image of this map is every point in P1(C) except [1, 0]. Thus, we can extend the
embedding C → P1(C) to a homeomorphism C ∪ {∞} → P1(C) by sending ∞ to
the point [1, 0]. For this reason, we can identity C∪{∞} with P1(C) by identifying
each point z ∈ C ∪ {∞} with its image under this homeomorphism. For this
reason, we say that the homogeneous coordinates of a point z ∈ C are [z, 1] and
the homogeneous coordinates of ∞ are [1, 0].

Now, we return to studying rational functions. An important property of rational
functions is their degree.

Definition 7. The degree of a rational function φ(z) = F (z)/G(z) is defined as

deg(φ) := max{deg(F ),deg(G)}.

We can also write rational functions using homogeneous coordinates. It is not
difficult to check that a rational function φ(z) = F (z)/G(z) takes the form

φ[X,Y ] = [F ∗[X,Y ], G∗[X,Y ]]
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where F ∗[X,Y ] = Y dF (X/Y ) and G∗[X,Y ] = Y dG[X/Y ], and d = deg(φ). The
benefit of this is that the point at infinity no longer needs to be treated specially.

Another important property of rational functions is their zeroes.

Definition 8. A complex function φ has a zero of order m at α if φ is complex
differentiable at α and φ and its first m − 1 derivatives vanish at α but its mth
derivative does not. If this is the case, we write ordα(φ) = m.

There is another useful way to characterize the zeroes of a function.

Theorem 9. Suppose f is complex differentiable at α. Then f has a zero of order
m if and only if

f(z) = (z − α)mg(z),

where g is complex differentiable at α and g(α) ̸= 0.

For a proof, see [4], for example. It is then easy to see that for any rational
function φ(z) = F (z)/G(z) such that F and G share no common roots, ordα(φ) is
the number of times (z−α) divides F (z). Now, for any rational function φ(z) and
any point α ̸= ∞ such that φ(α) ̸= ∞, φ has a Taylor series expansion around α:

φ(z) = φ(α) + φ′(α)(z − α) +
1

2
φ′′(α)(z − α)2 + · · · .

If φ′(α) = 0, then we say φ has a ramification point, or critical point at α. Further,
we make the following definition.

Definition 10. If φ ∈ C(z) and α ∈ C is such that φ(α) ̸= ∞, then the ramification
index of φ at α is defined as

eα(φ) = ordα(φ(z)− φ(α)).

Essentially, this is the degree of the first nonzero, nonconstant term in the Taylor
series of φ at α. Note that eα(φ) ≥ 2 if and only if α is a ramification point. Also,
one can check that if φ is a rational function then we must have eα(φ) ≤ deg(φ)
for all α. In the case that eα(φ) = deg(φ) we say that φ is totally ramified at α, or
that α is a totally ramified point.

Example 11. The function φ : P1(C) → P1(C) defined by

φ(z) =
z2 − 2

2z + 3

is a rational function of degree 2. It has one pole at z = − 3
2 , so

φ

(
−3

2

)
= ∞.

φ has a zero of order one at both
√
2 and at −

√
2, so we write ord√2(φ) =

ord−
√
2(φ) = 1. To find the ramification points of φ, we compute the derivative:

φ′(z) =
2(z + 1)(z + 2)

(2z + 3)2
.

Thus, the ramification points are −1 and −2. We can then compute

e−1(φ) = ord−1(φ(z)− φ(−1)) = ord−1

(
(z + 1)2

2z + 3

)
= 2,
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and

e−2(φ) = ord−2(φ(z)− φ(−2)) = ord−1

(
(z + 2)2

2z + 3

)
= 2.

In fact, we could have noted that eα(φ) ≤ 2 for all α because deg(φ) = 2. This
implies that eα(φ) = 2 for both −1 and −2, since eα(φ) ≥ 2 for ramification
points α. Also, for all α ̸= −1,−2,− 3

2 ,∞, we have eα(φ) = 1. Currently, we have

not defined eα(φ) at α = − 3
2 and α = ∞. There is actually a natural way to

define eα(φ) in this case, but first we need to introduce something called a Möbius
transformation.

3. Möbius Transformations

Definition 12. A Möbius transformation is a rational function f : P1(C) → P1(C)
of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad − bc ̸= 0. As usual for rational functions, if c ̸= 0 we
define f(−d/c) = ∞ and

f(∞) = lim
z→∞

f(z) =
a

c
.

If c = 0 we define

f(∞) = ∞.

Note that in homogeneous coordinates, we can write a Möbius transformation
in the simple form

f [X,Y ] = [aX + bY, cX + dY ].

From this, we see that if we associate the matrix

(
a b
c d

)
to the Möbius trans-

formation f , then composition of Möbius transformations corresponds to matrix
multiplication of the associated matrices. Note that if we scale a, b, c, and d by
some nonzero constant λ ∈ C then we get the same Möbius transformation. Thus

f also has the matrix representation

(
λa λb
λc λd

)
. Strictly speaking, we should say

that the matrix representation of a Möbius transformation f is the equivalence class
of 2× 2 complex matrices with nonzero determinant under the equivalence relation
which equates such matrices if and only if they differ by a nonzero scalar λ. If we
define multiplication of these equivalence classes in the obvious way, then this set
of equivalence classes becomes a group called the projective linear group of order 2
over C, and is denoted by PGL(2,C).

The reason that these maps are important is that they preserve a lot of impor-
tant properties. Indeed, from the above we see that any Möbius transformation is
induced by the vector space isomorphism

(x, y) → (ax+ by, cx+ dy)

of C2. Such a map is called an automorphism of projective spaces.

Example 13. The map f(z) = 1/z is a Möbius Transformation with the matrix

representation

(
0 1
1 0

)
. In homogeneous coordinates,

f [X,Y ] = [Y,X].
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Note that the matrix representation of f2(z) = z is(
0 1
1 0

)2

=

(
1 0
0 1

)
,

as expected.

Next, we prove an important lemma on the existence of certain Möbius trans-
formations.

Lemma 14. Let (α, α′, α′′) and (β, β′, β′′) be two triples of distinct points in P1(C).
Then there exists a Möbius transformation f such that

f(α) = β, f(α′) = β′, f(α′′) = β′′.

Proof. First consider the case α = 0, α′ = 1, α′′ = ∞. Suppose that in homoge-
neous coordinates we have β = [X1, Y1], β

′ = [X2, Y2], and β
′′ = [X3, Y3]. Define

a, b, c, d ∈ C by

a = Y1X2X3 −X1Y2X3

b = X1Y2X3 −X1X2Y3

c = Y1X2Y3 −X1Y2Y3

d = Y1Y2X3 − Y1X2Y3.

Note that

ad− bc = (Y1X2 −X1Y2)(Y1X3 −X1Y3)(Y2X3 −X2Y3),

which is nonzero since β, β′, and β′′ are distinct. Thus we can define a Möbius
transformation f by

f [X,Y ] = [aX + bY, cX + dY ].

We then have

f [0, 1] = [b, d] = [X1(Y2X3 −X2Y3), Y1(Y2X3 −X2Y3)] = [X1, Y1] = β

f [1, 1] = [a+ b, c+ d] = [X2(Y1X3 −X1Y3), Y2(Y1X3 −X1Y3))] = [X2, Y2] = β′

f [1, 0] = [a, c] = [X3(Y1X2 −X1Y2), Y3(Y1X2 −X1Y2)] = [X3, Y3] = β′′.

Thus, f is a Möbius transformation with the desired properties.
Next, consider the case β = 0, β′ = 1, and β′′ = ∞. By the previous part, we

can find a Möbius transformation f such that f(0) = α, f(1) = α′, and f(∞) = α′′.
Then, f−1 is a Möbius transformation and it satisfies

f−1(α) = 0, f−1(α′) = 1, f−1(α′′) = ∞.

Finally, consider the general case where (α, α′, α′′) and (β, β′, β′′) are arbitrary
triples of distinct points in P1(C). We can then find Möbius transformations f and
g such that

f(α) = 0, f(α′) = 1, f(α′′) = ∞
and

g(0) = β, f(1) = β′, g(∞) = β′′.

The composition g ◦ f is then a Möbius transformation which satisfies

(g ◦ f)(α) = β, (g ◦ f)(α′) = β′, (g ◦ f)(α′′) = β′′.

□
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The following corollary is important for dealing with the point at infinity.

Corollary 15. Given any rational function φ and any point α ∈ P1(C) such that
α = ∞ or φ(α) = ∞, we can find some Möbius transformation f such that f(α) ̸=
∞ and f(φ(α)) ̸= ∞.

Proof. If α = φ(α) = ∞ let f be any Möbius transformation f(z) = az+b
cz+d such that

c ̸= 0. Then,

f(α) = f(φ(α)) = f(∞) = a/c ̸= ∞.

Now suppose α ̸= φ(α). Choose β, β′ ∈ P1(C) such that β, β′ ̸= ∞. Also, choose
α′′ ̸= α,φ(α), and choose β′′ ̸= β, β′. Then, by Lemma 14 there exists a Möbius
transformation f such that

f(α) = β, f(φ(α)) = β′, f(α′′) = β′′.

Since β, β′′ ̸= ∞, f has the desired properties. □

Given a rational map φ : P1(C) → P1(C) and a Möbius transformation f , we
define the linear conjugate of φ by f to be the map

φf = f−1 ◦ φ ◦ f.

Since f is an automorphism, we think of this map essentially as a change of variables.
We imagine two copies of P1(C), related by the map f . Given a map φ acting on
the first copy of P1(C), its linear conjugate φf can then be thought of naturally as φ
acting on the second copy of P1(C). This is demonstrated in the below commutative
diagram.

P1(C) P1(C)

P1(C) P1(C)

f

φf

f

φ

The point of this is that we can now study the behavior of φ at a point α by
studying the behavior of φf at f−1(α). This is because f is an automorphism, so
it turns out that essentially all of the properties of φ we care about are preserved
under conjugation. In particular, if α = ∞ or φ(α) = ∞, by Corollary 15 we can
take a linear conjugate of φ by a map f so that f−1(α) ̸= ∞ and φf (f−1(α)) =
f−1(φ(α)) ̸= ∞. In this way, we can study φ at α using the standard techniques
of C.

For example, one can verify that the ramification index of φ at α is preserved
under conjugation; i.e. if f is a Möbius transformation and f−1(α) = β, then

eα(φ) = eβ(φ
f ),

assuming that α, β, φ(α), φf (β) ̸= ∞ (since we only defined the ramification index
when α and φ(α) are not ∞). We can actually use this to define the ramification
index at points α such that either α = ∞ or φ(α) = ∞. Given such an α, choose
some Möbius transformation f such that β = f−1(α) ̸= ∞ and φf (β) ̸= ∞. Then,
eβ(φ

f ) is defined as before, so we define the ramification index of φ at α to be

eα(φ) = eβ(φ
f ).
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Note that this is well defined, because if f ′ is a different Möbius transformation
such that β′ = f ′−1(α) ̸= ∞ and φf ′

(β′) ̸= ∞, then

φf ′
= f ′−1 ◦ φ ◦ f ′ = f ′−1 ◦ f ◦ f−1 ◦ φ ◦ f ◦ f−1 ◦ f ′

= (f−1 ◦ f ′)−1 ◦ φf ◦ (f−1 ◦ f ′) = (φf )f
−1◦f ′

.

Since f−1 ◦ f ′ is a Möbius transformation it follows that φf ′
and φf are linear

conjugates and thus

eβ(φ
f ) = eβ′(φf ′

).

Example 16. Consider the rational function φ from Example 11:

φ(z) =
z2 − 2

2z + 3
.

Previously, we computed the ramification index at all points α ̸= − 3
2 ,∞. To

compute these two ramification indexes, we conjugate by the Möbius transformation

f(z) =
1

z
.

This gives

φf (z) =
z(2 + 3z)

1− 2z2
.

By definition, e∞(φ) = e0(φ
f ) and e−3/2(φ) = e−2/3(φ

f ). Thus,

e∞(φ) = ord0(φ
f (z)− φf (0)) = ord0

(
z(2 + 3z)

1− 2z2

)
= 1

and

e−3/2(φ) = ord−2/3(φ
f (z)− φf (−2/3)) = ord−2/3

(
z(2 + 3z)

1− 2z2

)
= 1.

Conjugation is also nice for studying dynamical systems, since it commutes with
function iteration:

(φf )n = (f−1 ◦ φ ◦ f) ◦ (f−1 ◦ φ ◦ f) ◦ · · · ◦ (f−1 ◦ φ ◦ f) = f−1 ◦ φn ◦ f.

We also note that the degree of a rational function is preserved under linear
conjugation, meaning that deg(φ) = deg(φf ). In fact, this follows from the more
general fact that

deg(f ◦ g) = deg(f)deg(g)

for any nonconstant rational functions f and g, which is not too difficult to prove
(for example, see [1]).

Example 17 (Lang’s Algebra [2] Chapter 1 Problem 55). Let

M(z) =
az + b

cz + d

be a Möbius transformation, and suppose that M(z) has two distinct fixed points
not equal to ∞. This means that there are two distinct complex solutions to the
equation

az + b

cz + d
= z.
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In particular, c ̸= 0. We will computeMk(z) for integers k ≥ 1. LetW =

(
w1

w2

)
and

W ′ =

(
w′

1

w′
2

)
be the eigenvectors of

(
a b
c d

)
with eigenvalues λ and λ′ respectively.

We also have λ, λ′ ̸= 0 since ad− bc ̸= 0. We note that(
λw1

λw2

)
=

(
a b
c d

)(
w1

w2

)
=

(
aw1 + bw2

cw1 + dw2

)
.

This gives the equations λw1 = aw1 + bw2 and λw2 = cw1 + dw2. This second
equation implies w2 ̸= 0 because otherwise we would have cw1 = 0 so either c = 0
or w1 = 0, both of which would be impossible. Now, if we let w = w1/w2, we have

M(w) =
aw1

w2
+ b

cw1

w2
+ d

=
aw1 + bw2

cw1 + dw2
=
λw1

λw2
= w.

So w is a fixed point ofM . Similarly, one can show w′
2 ̸= 0 from which it follows that

w′ = w′
1/w

′
2 is also a fixed point of M . Note that 1

w2
W =

(
w
1

)
and 1

w′
2
W ′ =

(
w′

1

)
are also eigenvectors of M , so

aw + b = λw, cw + d = λ, aw′ + b = λ′w′, and cw′ + d = λ′.

Also, w ̸= w′ since W and W ′ are distinct eigenvectors. Next, we define a Möbius
transformation S by

S(z) =
wz + w′

z + 1
,

and we compute the conjugateMS = S−1 ◦M ◦S. This is a Möbius transformation
given by the matrix(

w w′

1 1

)−1 (
a b
c d

)(
w w′

1 1

)
=

(
w w′

1 1

)−1 (
aw + b aw′ + b
cw + d cw′ + d

)
=

(
w w′

1 1

)−1 (
λw λ′w′

λ λ′

)
=

1

w − w′

(
1 −w′

−1 w

)(
λw λ′w′

λ λ′

)
=

1

w − w′

(
λw − λw′ 0

0 λ′w − λ′w′

)
=

(
λ 0
0 λ′

)
.

It follows that

(S−1 ◦M ◦ S)(z) = λ

λ′
z.

Now, we can use the fact that conjugation commutes with function iteration to see
that

S−1 ◦Mk ◦ S = (S−1 ◦M ◦ S)k =

(
λ

λ′

)k

id,

where id is the identity map. Composing both sides with S−1 on the right and S
on the left, we obtain

Mk(z) =
λkw(z − w′)− λ′kw′(z − w)

λk(z − w′)− λ′k(z − w)
.
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This illustrates how conjugation is useful for studying dynamical systems.

4. Riemann-Hurwitz Formula

In this section we will prove the Riemann-Hurwitz formula, which is a very im-
portant relationship between the global property of the degree of a rational function
φ and the local property of the ramification index of φ at some point. First, we
prove a lemma.

Lemma 18. Suppose φ(z) ∈ C(z) and

φ(z) =
F (z)

G(z)
=
a0 + a1z + · · ·+ ad−1z

d−1

b0 + b1z + · · ·+ bdzd

with bd ̸= 0. Then, ∞ is a ramification point of φ if and only if ad−1 = 0.

Proof. Let g be the Möbius transformation g(z) = z+1
z . Then, by definition,

e∞(φ) = e0(φ
g). Note that 0 ̸= ∞ and φg(0) = −1 ̸= ∞, so we can compute

e0(φ
g) as normal. Suppose that

φg(z) =
f(z)

g(z)
,

where f and g share no common roots. Note that g(0) ̸= 0. We then have

(φg)′(z) =
f ′(z)g(z)− f(z)g′(z)

(g(z))2
.

It follows that e0(φ
g) ≥ 2 if and only if

f ′(0)g(0) = f(0)g′(0).

We now compute f(0), f ′(0), g(0), and f ′(0). Note that

φg(z) =
1

φ((z + 1)/z)− 1

=
G((z + 1)/z)

F ((z + 1)/z)−G((z + 1)/z)

=
zdG((z + 1)/z)

zdF ((z + 1)/z)− zdG((z + 1)/z)
.

The numerator and denominator of this last fraction share no common root; 0
is easily seen to not be a common root and any other common root would then
mean that F and G share a common root. Thus zdG((z + 1)/z) = λf(z) and
zdF ((z+1)/z− zdG((z+1)/z)) = λg(z) for some nonzero λ. Writing out the first
couple terms, we see that

zdG((z + 1)/z) = bd + (dbd + bd−1)z + · · ·
and

zdF ((z + 1)/z)− zdG((z + 1)/z)) = −bd + (ad−1 − dbd − bd−1)z + · · · .
Thus,

λf(0) = bd, λf ′(0) = dbd + bd−1, λg(0) = −bd, λg′(0) = ad−1 − dbd − bd−1.

Then, we can compute

λ2(f ′(0)g(0)− f(0)g′(0)) = −bdad−1.
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Since λ ̸= 0, e0(φ
g) ≥ 2 if and only if bdad−1 = 0. Because bd ̸= 0, this means

e0(φ
g) ≥ 2 if and only if ad−1 = 0 and thus ∞ is a ramification point of φ if and

only if ad−1 = 0. □

Theorem 19 (Riemann-Hurwitz Formula). If φ(z) ∈ C(z) and deg(φ) = d ≥ 1,
then

2d− 2 =
∑

α∈P1(C)

(eα(φ)− 1).

Proof. By the previous discussion, both sides of this equation are unchanged if we
replace φ with one of its linear conjugates. Now, let x ∈ C be some point such that
ex(φ) = 1, φ(x) ̸= x, and φ(α) ̸= x for any ramification point α. This is possible
since there are only finitely many ramification points and finitely many solutions
to φ(x) = x. It follows by Lemma 14 that we can find a Möbius transformation f
such that f(∞) = x and f(0) = φ(x).

Now consider the conjugate of φ by f , φf . First, we have

φf (∞) = f−1(φ(f(∞))) = f−1(φ(x)) = 0.

Also, since conjugation preserves the ramification index, we have

e∞(φf ) = ef(∞)(φ) = ex(φ) = 1.

Lastly, note that φf (α′) ̸= ∞ for any point α′ such that eα′(φf ) ≥ 2, since this
would imply

f−1(φ(f(α′))) = ∞ =⇒ φ(f(α′)) = x,

and f(α′) is a ramification point of φ since ef(α′)(φ) = eα′(φf ) ≥ 2.

Thus, by replacing φ with φf , we can assume without loss of generality that ∞
is not a ramification point or the image of a ramification point, and that φ(∞) = 0.
Now, let φ(z) = F (z)/G(z), where F and G are polynomials that share no common
roots. Since φ(∞) = 0, we have deg(F ) < deg(G) and thus deg(G) = d. Suppose
now that

φ(z) =
F (z)

G(z)
=
a0 + a1z + · · ·+ ad−1z

d−1

b0 + b1z + · · ·+ bdzd

with bd ̸= 0. It follows from Lemma 18 that ad−1 ̸= 0.
Now, note that eα(φ) − 1 = 0 whenever α is not a ramification point. Thus, if

we let S be the set of ramification points of φ, we have∑
α∈P1(C)

(eα(φ)− 1) =
∑
α∈S

(eα(φ)− 1).

Next, note that for all α ̸= ∞ such that φ(α) ̸= ∞, we have

φ(z) = φ(α) + (z − α)eα(φ)ψ(z)

for some rational function ψ(z) such that ψ(α) ̸= 0,∞, by Theorem 9. Taking the
derivative of this, we obtain

φ′(z) = eα(φ)(z − α)eα(φ)−1ψ(z) + (z − α)eα(a)ψ′(z)

= (z − α)eα(φ)−1(eα(φ)ψ(z) + (z − α)ψ′(z)).

Since ψ(α) ̸= 0, it follows that ordα(φ
′(z)) = eα(φ) − 1, also by Theorem 9.

Therefore, we have ∑
α∈S

(eα(φ)− 1) =
∑
α∈S

ordα(φ
′(z)),
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because we have α ̸= ∞ and φ(α) ̸= ∞ for all α ∈ S. However, it also follows from
Theorem 9 that ordα(φ

′(z)) is the number of times α is a root of the numerator of
φ′(z) (we are using the fact that α is not a root of the denominator of φ′(α) since
φ(α) ̸= ∞). Thus,∑

α∈S

ordα(φ
′(z)) = deg(G(z)F ′(z)− F (z)G′(z)).

Then, we note that the term with the largest power of z in G(z)F ′(z)− F (z)G′(z)
is

(d− 1)bdad−1z
2d−2 − dad−1bdz

2d−2 = −bdad−1z
2d−2 ̸= 0.

Thus, deg(G(z)F ′(z)− F (z)G′(z)) = 2d− 2 from which it follows that∑
α∈P1(C)

(eα(φ)− 1) = 2d− 2.

□

Corollary 20 (Weak Riemann-Hurwitz). Let φ : P1(C) → P1(C) be a rational
map of degree d ≥ 1.

(1) If α ∈ P1(C) then ∑
β∈φ−1(α)

eβ(φ) = d.

(2)

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|).

Proof. We first prove (1). First, by conjugating by a Möbius transformation, we
can assume α ̸= ∞. Next, we can find a Möbius transformation f such that
f(α) = α and f(∞) ̸∈ φ−1(α), by Lemma 14. Then, the conjugate φf satisfies
∞ ̸∈ (φf )−1(α) since otherwise we would have

φ(f(∞)) = f(α) = α,

which is impossible. Thus, by replacing φ with φf we can assume without loss of
generality that α ̸= ∞ and ∞ ̸∈ φ−1(α). Now, suppose that φ(z) = F (z)/G(z)
where F and G share no roots and that φ−1(α) = {r1, r2, · · · , rn}. This means
that r1, r2, . . . , rn are the solutions to φ(z) = α, so

F (ri)− αG(ri)

G(ri)
= 0,

since α ̸= ∞. Since ri ̸= ∞, it follows that that ri is a root of F (z) − αG(z) for
all i. Also, note that any root x of F (z) − αG(z) must be in φ−1(α). Indeed, if
F (x) − αG(x) = 0 then x cannot be a root of G since otherwise F and G would
have a common root. Thus, we have

F (x)− αG(x)

G(x)
= 0 =⇒ φ(x) = α.

It follows that

F (z)− αG(z) = c(z − r1)
e1(z − r2)

e2 · · · (z − rn)
en
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for positive integers e1, . . . , en and a constant c. However, note that

eri(φ) = ordri(φ(z)− φ(ri)) = ordri(φ(z)− α) = ordri

(
F (z)− αG(z)

Gz

)
.

By Theorem 9, this is clearly just the number of times z− ri divides F (z)−αG(z),
which is ei. Thus, we have

F (z)− αG(z) = c(z − r1)
er1 (φ)(z − r2)

er2 (φ) · · · (z − rn)
ern (φ).

Now, since φ(∞) ̸= α, we have deg(F (z)−αG(z)) = d which one can see by simply
writing out F and G as polynomials. Thus, taking the degree of both sides, we see
that ∑

β∈φ−1(α)

eβ(φ) = d.

To prove the second part, we simply use part (1) and the Riemann-Hurwitz formula:

2d− 2 =
∑

β∈P1(C)

(eβ(φ)− 1)

=
∑

α∈P1(C)

∑
β∈φ−1(α)

(eα(φ)− 1)

=
∑

α∈P1(C)

(d− |φ−1(α)|).

In the second line we are using the fact that the preimages φ−1(α) partition P1(C).
□

An immediate consequence of part (1) of this is the following.

Corollary 21. A point α ∈ P1(C) is totally ramified if and only if φ−1(φ(α))
consists of only one point.

Proof. By part (1) of Corollary 20, we have the inequality

eα(φ) ≤
∑

β∈φ−1(φ(α))

eβ(φ) = d.

Since eβ(φ) ≥ 1 for all β, equality holds if and only if eα(φ) is the only term in
this sum. In other words, eα(φ) = d if and only if φ−1(φ(α)) consists of only one
point. □

In particular, if α is a fixed point, meaning that φ(α) = α, α is totally ramified
if and only if φ−1(α) = {α}.

5. Diophantine Approximation

We now take a detour to establish some results from Diophantine approximation
which will be important in studying the integral points in the orbits of rational func-
tions. Diophantine approximation is about how well we can approximate irrational
numbers with rational ones. Clearly, any irrational number can be approximated
arbitrarily well with rational numbers, since rational numbers are dense in R. We
thus study how well we can approximate irrational numbers using rational numbers
with a small denominator. A simple result in this is the following.
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Theorem 22 (Dirichlet’s Approximation Theorem). Given any irrational number
α, there are infinitely many rational numbers x/y such that x, y ∈ Z and∣∣∣∣xy − α

∣∣∣∣ < 1

y2
.

Proof. The proof is an application of the pigeonhole principle. For a fixed integer
n ≥ 1, consider the numbers {0·α}, {α}, {2α}, . . . , {nα}, where {x} = x−⌊x⌋ is the
fractional part of x. This is a sequence of n+ 1 real numbers in the interval [0, 1).
Consider splitting this interval up into the n intervals

[
i
n ,

i+1
n

)
for 0 ≤ i ≤ n − 1.

By the pigeonhole principle, two of our numbers must lie in the same interval, say
{iα} and {jα} with i > j. It thus follows that the distance from (i − j)α to the
nearest integer is less than 1/n, so there exists an integer x such that

|x− (i− j)α| < 1

n
.

Letting y = i− j ≤ n and dividing by y, we get∣∣∣∣xy − α

∣∣∣∣ < 1

yn
≤ 1

y2
.

We now show there are infinitely many such rational numbers x/y. Suppose for the
sake of contradiction that there are only finitely many such numbers. Note that by
the above, for any integer n ≥ 0 we can find some rational number x/y with y ≤ n
such that ∣∣∣∣xy − α

∣∣∣∣ < 1

yn
≤ 1

y2
.

However, by assumption, there are only finitely many rational numbers x/y which
satisfy this. Thus, there must be some rational number x/y such that∣∣∣∣xy − α

∣∣∣∣ < 1

yn

for infinitely many values of n, which is clearly a contradiction. □

The next theorem shows that for algebraic numbers (numbers which are the root
of some nonzero polynomial with rational coefficients) Dirichlet’s approximation
theorem is about the best we can do.

Theorem 23 (Roth’s Theorem). Suppose β is an irrational algebraic number and
suppose ϵ > 0 is a real number. Then there is some constant c > 0, depending on
β and ϵ, such that ∣∣∣a

b
− β

∣∣∣ ≥ c

|b|2+ϵ
,

for all a/b ∈ Q.

Unfortunately, the proof of this is too long and difficult to be included here. See
[3] for the original proof. We now use this to prove the following theorem.

Theorem 24 (Thue). Suppose G(x, y) is a homogeneous, integer polynomial of
degree d and suppose B is an integer. If G(x, y) has at least three distinct roots in
P1(C) then the equation

G(x, y) = B

has finitely many integer solutions.
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Proof. Suppose that G factors over Q as

G(x, y) = k(G1(x, y))
e1(G2(x, y))

e2 · · · (Gn(x, y))
en ,

where k is a constant and each Gi is a homogeneous polynomial which is irreducible
over Q. Since each polynomial Gi has rational coefficients, there exists an integer
ci such that G′

i = ciGi has integer coefficients. If we let c = ce11 c
e2
2 · · · cenn , then

G(x, y) = B if and only if

cB = cG(x, y) = k(G′
1(x, y))

e1(G′
2(x, y))

e2 · · · (G′
n(x, y))

en .

It thus suffices to prove there are only finitely many solutions to this equation.
Since each polynomial G′

i has integer coefficients, we must have G′
1(x, y) | cB for

any integer solution x, y. Therefore it suffices to prove the theorem in the case
G(x, y) is an integer polynomial which is irreducible over Q, since this would imply
there are only finitely many solutions to G′

1(x, y) = d for each divisor d of cB, and
thus there would only be finitely many solutions to G′

1(x, y) | cB.
We thus assume that G(x, y) is an integer polynomial which is irreducible over

Q. Suppose that G(x, y) factors over C as

G(x, y) = c(x− α1y)(x− α2y) · · · (x− αdy).

Since G is irreducible over Q, all of the roots αi are distinct. Further, we must have
d ≥ 3 since G has at least three distinct roots. Dividing by cyd, we want to show
that there are finitely many solutions to the equation(

x

y
− α1

)(
x

y
− α2

)
· · ·

(
x

y
− αd

)
=

B

cyd
.

Now, intuitively, the right-hand side of this is very small for large values of y.
However, since the roots α1, α2, . . . , αd are distinct, at most one term on the left-
hand side can be small. The idea is that this should imply that the smallest term on
the left-hand side must shrink at least as fast as 1/yd. More formally, we should be
able to find some constant M such that M/|y|d is always larger than the absolute
value of the smallest term on the left-hand side. After this, Roth’s theorem will
imply that there are only finitely many solutions. The rest of the proof is just a
technical argument to prove this formally. Let

N =
2(|B/c|)1/d

mini ̸=j |αi − αj |
,

where the minimum is taken over all pairs 1 ≤ i, j ≤ d such that i ̸= j. Then, for
all solutions (x, y) such that |y| > N , we have

|B|
|c||y|d

≥ min
1≤i≤d

∣∣∣∣xy − αi

∣∣∣∣d .
This implies

min
1≤i≤d

∣∣∣∣xy − αi

∣∣∣∣ ≤ (|B/c|)1/d

|y|
≤ 1

2
min
i ̸=j

|αi − αj |.
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Let 1 ≤ m ≤ d be the integer such that |xy − αm| is minimal. Thus
∣∣∣xy − αm

∣∣∣ ≤
1
2 mini̸=j |αi − αj |. Then, for all i ̸= m,∣∣∣∣xy − αi

∣∣∣∣ ≥ |αi − αm| −
∣∣∣∣xy − αm

∣∣∣∣
≥ |αi − αm| − 1

2
min
i ̸=j

|αi − αj |

≥ |αi − αm|
2

.

Now, for a fixed value of i, let

Mi =
∏
i ̸=j

|ai − aj |
2

,

and define

M =
|B/c|

min(Mi)
.

We thus have

|B/c|
|y|d

≥
∣∣∣∣xy − αm

∣∣∣∣ ∏
i ̸=m

|αi − αm|
2

=

∣∣∣∣xy − αm

∣∣∣∣Mm ≥
∣∣∣∣xy − αm

∣∣∣∣ |B/c|M
.

Rearranging, we obtain

min
1≤i≤d

∣∣∣∣xy − αi

∣∣∣∣ ≤ M

|y|d
,

for all solutions x, y such that |y| > N . Now, let 0 < ϵ < 1 be a real number. Since
each αi is an algebraic number, by Roth’s theorem we can find some constant Ki

such that ∣∣∣∣xy − αi

∣∣∣∣ ≥ Ki

|y|2+ϵ

for all x, y. Letting K = min(Ki), we have

min
1≤i≤d

∣∣∣∣xy − αi

∣∣∣∣ ≥ K

|y|2+ϵ

for all rational numbers x/y. It follows that for all integers x, y such that G(x, y) =
B and |y| > N ,

K

|y|2+ϵ
≤ min

1≤i≤d

∣∣∣∣xy − αi

∣∣∣∣ ≤ M

|y|d
.

Thus,

|y|d−2−ϵ ≤ M

K
.

Since d ≥ 3, this means |y| ≤ (M/K)1/(d−2−ϵ). Thus, for all solutions x, y we have

|y| ≤ max
(
N, (M/K)1/(d−2−ϵ)

)
.

Clearly this means there are only finitely many possible values of y. Finally, note
that for a fixed value of y, the equation G(x, y) = B is a polynomial of degree d
in x and thus has at most d possible solutions. Since there are only finitely many
possible values for y, this means that there are only finitely many pairs of integers
(x, y) such that G(x, y) = B, as desired. □
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We can now use this to prove the following important theorem about rational
functions.

Theorem 25 (Siegel). Suppose φ(z) ∈ Q(z) has at least three distinct poles in
P1(C). Then there are only finitely many rational numbers α such that φ(α) is an
integer.

Proof. Suppose that in homogeneous coordinates, φ[X,Y ] = [F (X,Y ), G(X,Y )]
where F and G are homogeneous polynomials of degree d with rational coefficients
and with no common root. By scaling F and G by a constant if necessary we can
assume F and G are integer polynomials. Note that G has at least three distinct
roots, since φ has at least three distinct poles. Any rational number a

b with gcd(a, b)
has homogeneous coordinates [a, b], so

φ
(a
b

)
=
F (a, b)

G(a, b)
.

It follows that φ
(
a
b

)
is an integer if and only if G(a, b) divides F (a, b). The idea

is to show that if G(a, b) divides F (a, b) then G(a, b) must divide some constant,
after which we can apply Theorem 24. To do this, we need to construct something
called the resultant of F and G.

For each integer n ≥ 1, let Q[X,Y ]n denote the set of homogeneous polynomials
in two variables X and Y with rational coefficients and degree n. Clearly Q[X,Y ]n
is a vector space over Q with basis {Xn, Xn−1Y, . . . ,XY n−1, Y n}. Now, we define
a map ϕ : Q[X,Y ]d−1 ×Q[X,Y ]d−1 → Q[X,Y ]2d−1 by

ϕ(C(X,Y ), D(X,Y )) = C(X,Y )F (X,Y ) +D(X,Y )G(X,Y ).

Noting that Q[X,Y ]d−1×Q[X,Y ]d−1 is also a vector space, we see that ϕ is a linear
map of vector spaces. In fact, if

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d,

G(X,Y ) = b0X
d + b1X

d−1Y + · · ·+ bd−1XY
d−1 + bdY

d,

C(X,Y ) = C0X
d−1 + C1X

d−2Y + · · ·+ Cd−2XY
d−2 + Cd−1Y

d−1,

and

D(X,Y ) = D0X
d−1 +D1X

d−2Y + · · ·+Dd−2XY
d−2 +Dd−1Y

d−1

then after choosing the obvious bases, ϕ is represented by the matrix multiplication

ϕ(C(X,Y ), D(X,Y )) =



a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
a2 a1 · · · 0 b2 b1 · · · 0
...

...
. . .

...
...

...
. . .

...
ad−1 ad−2 · · · a0 bd−1 bd−2 · · · b0
ad ad−1 · · · a1 bd bd−1 · · · b1
0 ad · · · a2 0 bd · · · b2
...

...
. . .

...
...

...
. . .

...
0 0 · · · ad 0 0 · · · bd





C0

C1

...
Cd−1

D0

D1

...
Dd−1


.

Let M denote this matrix and note that the entries of M are integers. We define
the resultant of F and G to be the quantity Res(F,G) = R = det(M), which
is an integer. We claim that this is nonzero. Indeed, if R = 0 then the kernel
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of ϕ is nontrivial, so we can find polynomials C(X,Y ) and D(X,Y ) such that
C(X,Y )F (X,Y ) +D(X,Y )G(X,Y ) = 0. Rearranging, this becomes

C(X,Y )F (X,Y ) = −D(X,Y )G(X,Y ).

The d roots of F (X,Y ) must also be roots of the right-hand side. However, D(X,Y )
has degree d− 1 and thus has only d− 1 roots. It follows that G(X,Y ) must share
a root with F (X,Y ), which is a contradiction. Thus we conclude that R ̸= 0 and
M is invertible. The inverse matrix M−1 does not necessarily consist of integer
entries. However, the adjoint matrix Madj = RM−1 does consist of integer entries,
because M has only integer entries. We can thus let C1(X,Y ) and D1(X,Y ) be
polynomials with integer coefficients C0, C1, . . . , Cd−1 and D0, D1, . . . , Dd−1 such
that 

C0

C1

...
Cd−1

D0

D1

...
Dd−1


=Madj


1
0
0
...
0

 ,

and we can let C2(X,Y ) and D2(X,Y ) be polynomials with integer coefficients
C ′

0, C
′
1, . . . , C

′
d−1 and D′

0, D
′
1, . . . , D

′
d−1 such that



C ′
0

C ′
1
...

C ′
d−1

D′
0

D′
1
...

D′
d−1


=Madj


0
0
...
0
1

 .

Then,

ϕ(C1(X,Y ), D1(X,Y )) =M



C0

C1

...
Cd−1

D0

D1

...
Dd−1


=MMadj


1
0
0
...
0

 =


R
0
0
...
0

 ,
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and

ϕ(C2(X,Y ), D2(X,Y )) =M



C ′
0

C ′
1
...

C ′
d−1

D′
0

D′
1
...

D′
d−1


=MMadj


0
0
...
0
1

 =


0
0
...
0
R

 .

It follows that

C1(X,Y )F (X,Y ) +D1(X,Y )G(X,Y ) = RX2d−1

and
C2(X,Y )F (X,Y ) +D2(X,Y )G(X,Y ) = RY 2d−1.

Therefore, if a
b is a rational number in lowest terms such that φ

(
a
b

)
∈ Z, and thus

G(a, b) | F (a, b), we can plug in (X,Y ) = (a, b) into the above equation to get

G(a, b) | C1(a, b)F (a, b) +D1(a, b)G(a, b) = Ra2d−1

and
G(a, b) | C2(a, b)F (a, b) +D2(a, b)G(a, b) = Rb2d−1.

It follows that G(a, b) | gcd(Ra2d−1, Rb2d−1). Since a and b are relatively prime,
this greatest common divisor is just R, so G(a, b) divides R. However, there are
only finitely many divisors of R, say d1, d2, . . . , dr. By Theorem 24, the equation

G(a, b) = di

has finitely many integer solutions for all i, since G has at least three distinct roots.
There are thus only finitely many pairs of integers (a, b) such that G(a, b) | R.
Finally, it follows that there are only finitely many rational numbers a

b such that

φ
(
a
b

)
is an integer. □

6. Polynomials and Integral Points in Orbits

Next, we will study rational functions which have an iterate which is a poly-
nomial. However, since we are working in P1(C), the most natural properties to
study are those preserved under conjugation by Möbius transformations. Polyno-
mials are not necessarily preserved under conjugation by Möbius transformations,
so it is often useful to study maps which are either a polynomial or conjugate to a
polynomial. There is an important criteria for such functions.

Theorem 26. A rational map φ : P1(C) → P1(C) is a polynomial or a conjugate
of a polynomial if and only if φ has a totally ramified fixed point; i.e. there exists
some α ∈ P1(C) such that φ(α) = α and eα(φ) = deg(φ) = d.

Proof. We first note that φ is a polynomial if and only if ∞ is a totally ramified
fixed point. Indeed, the points z such that φ(z) = ∞ are exactly the roots of the
denominator of φ, possibly along with ∞. By Corollary 21, it follows that ∞ is a
totally ramified fixed point if and only if there are no roots of the denominator of
φ, which is the same as saying that φ is a polynomial. Since the ramification index
is preserved under conjugation, it immediately follows that if φ is a conjugate of a
polynomial then φ has a totally ramified fixed point.
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To prove the converse, suppose that φ has a totally ramified fixed point at α,
and let f be a Möbius transformation such that f(∞) = α. We then have

e∞(φf ) = eα(φ) = d.

Also, it is easy to see that φf (∞) = ∞. Thus, φf has a totally ramified fixed point
at ∞ and is therefore a polynomial. Since φ is a conjugate of φf , it follows that φ
is conjugate to a polynomial. □

By Corollary 21, this means that φ is a conjugate of a polynomial if and only if
φ−1(α) = {α} for some point α.

An important type of set in dynamics is one which is invariant under the map
φ. As Theorem 28 shows, for rational functions, if such a set is finite it is quite
simple.

Definition 27. A set E such that φ−1(E) = E = φ(E) is called an invariant set
of φ. If E is also finite, it is called an exceptional set.

Theorem 28. Suppose φ : P1(C) → P1(C) is a rational map of degree at least 2
and let E be an exceptional set for φ. Then |E| ≤ 2.

Proof. Since φ−1(E) = E, it follows that φ must permute the elements of E. Since
E is finite, this implies that for some integer n ≥ 1, φn(x) = x for all x ∈ E. Now,
suppose that φn has degree d. We must have d ≥ 2 since deg(φ) ≥ 2. For each
point z ∈ E, we must have (φn)−1(z) ⊂ E, since E is invariant under φ. However,
for all y ∈ E such that y ̸= x, φn(y) = y ̸= x. Thus, (φn)−1(z) = {z} and in
particular, |(φn)−1(z)| = 1. By the Weak Riemann-Hurwitz Theorem (Corollary
20), we have

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|)

≥
∑
α∈E

(d− |φ−1(α)|)

=
∑
α∈E

(d− 1)

= |E|(d− 1).

Since d ≥ 2, this implies |E| ≤ 2. □

Theorem 29. Suppose φ is a rational function of degree d ≥ 2 and φn is conju-
gate to a polynomial for some integer n ≥ 1. Then φ2 is already conjugate to a
polynomial.

Proof. By Theorem 26, φn has a totally ramified fixed point, say α. This implies
(φn)−1(α) = {α}. Now, it follows that φ−1(φi(α)) = {φi−1(α)} for all 1 ≤ i ≤ n.
Indeed, if the preimage φ−1(φi(α)) contained some point x ̸= φi−1(α), then any
point y ∈ φ−(i−1)(x) would satisfy φn(y) = α, and α ̸= y, which contradicts
(φn)−1(α) = {α}. It then follows that the set

E = {α,φ(α), φ2(α), . . . , φn−1(α)}
is an exceptional set. Thus, by Theorem 28, |E| ≤ 2 and hence we have either
φ(α) = α or φ(α) ̸= α and φ2(α) = α. In the first case, we have φ−1(α) =
{φn−1(α)} = {α}, so α is a totally ramified fixed point. Thus φ is conjugate to a
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polynomial by Theorem 26. In the second case, note that φn(α) = α, so n must be
even. Then, we have

φ−2(α) = φ−1(φ−1(α)) = φ−1(φn−1(α)) = φ−1(φ(α)) = {α}.

Thus, α is a totally ramified fixed point of φ2, so φ2 is conjugate to a polynomial
by Theorem 26. □

In fact, by the exact same proof as above but in the special case α = ∞, we have
the following.

Corollary 30. Suppose φ is a rational function of degree d ≥ 2 and φn is a
polynomial for some integer n ≥ 1. Then φ2 is already a polynomial.

Finally, we can prove the following theorem.

Theorem 31. If φ is a rational function of degree d ≥ 2 and φ2 is not polynomial,
then for all a ∈ Q, Oφ(a) contains finitely many integers.

Proof. By Corollary 30, no iterate of φ is a polynomial. We first show that
|φ−4(∞)| ≥ 3 and hence φ4 has at least 3 distinct poles. If |φ−3(∞)| ≥ 3 then
this is true because |φ−4(∞)| = |φ−1(φ−3(∞))| ≥ |φ−3(∞)| (because φ−1(z) is
nonempty for all z). Thus suppose |φ−3(∞)| ≤ 2. We now consider several cases.
In each case, we will prove that d ≤ 2 and then that |φ−4(∞)| ≥ 3. Note that if
d ≤ 2 and then d = 2 by assumption. If this is the case, then we claim that there
are at most two points α such that φ−1(α) consists of one point. Indeed, by the
Weak Riemann-Hurwitz Theorem (Corollary 20),

2 =
∑

α∈P1(C)

(2− |φ−1(α)|).

So there are at most 2 points α such that 2− |φ−1(α)| > 0 ⇐⇒ |φ−1(α)| = 1.

Case 1: |φ−3(∞)| = 1. This means that there exists exactly one point P such that
φ3(P ) = ∞. Let φ(P ) = Q and φ(Q) = R. We thus have φ−1(∞) = {R},
φ−1(R) = {Q}, and φ−1(Q) = {P}. We note that R, Q, and ∞ are
distinct. If R = ∞ then we would have φ(∞) = ∞, so ∞ would be a
totally ramified fixed point. However, φ is not a polynomial so ∞ cannot
be a totally ramified fixed point (Theorem 26). R ̸= Q since R = Q would
imply φ(R) = φ(Q) =⇒ ∞ = R. Similarly, Q ̸= ∞ since otherwise
φ2(∞) = ∞ and hence ∞ is a totally ramified fixed point of φ2, which
is impossible since φ2 is not a polynomial. Thus, by the Weak Riemann-
Hurwitz theorem (Corollary 20)

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|)

≥ (d− |φ−1(∞)|) + (d− |φ−1(R)|) + (d− |φ−1(Q)|)
= 3d− 3.

We thus have d ≤ 1, which is a contradiction, so this case is impossible.
Case 2: |φ−3(∞)| = 2 and |φ−2(∞)| = 1. Let φ−3(∞) = {P, P ′}, and define Q =

φ(P ) = φ(P ′) and R = φ(Q). Note that φ−1(∞) = {R}, φ−1(R) = {Q},
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and φ−1(Q) = {P, P ′}. By the exact same argument as in case 1, P , Q,
and ∞ are distinct points. Then, by the Weak Riemann-Hurwitz theorem,

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|)

≥ (d− |φ−1(∞)|) + (d− |φ−1(R)|) + (d− |φ−1(Q)|)
= 3d− 4.

So d ≤ 2. Further, because φ−1(∞) = {R} and φ−1(R) = {Q}, there are
no other points α such that |φ−1(α)| = 1. P and P ′ are not equal to R
and not equal to each other, so at least one of them must be distinct from
both R and ∞, say P . Then, |φ−1(P )| = 2. Thus,

|φ−4(∞)| = |φ−1({P, P ′})| = |φ−1(P )|+ |φ−1(P ′)| ≥ 2 + 1 = 3,

as desired.
Case 3: |φ−3(∞)| = |φ−2(∞)| = 2 and |φ−1(∞)| = 1. Let φ−3(∞) = {P, P ′},

and define Q = φ(P ), Q′ = φ(P ′), and R = φ(Q) = φ(Q′). Note that
φ−1(∞) = {R}, φ−1(R) = {Q,Q′}, and φ−1(Q) = {P}. Like the previous
cases, R ̸= ∞. Also, neither Q nor Q′ are equal to R, since this would
imply R = ∞. Since Q ̸= Q′, at least one of Q and Q′ are not equal to
infinity. By relabeling if necessary, we may assume that Q ̸= ∞ and thus
Q, R, and ∞ are distinct. By the Weak Riemann-Hurwitz theorem,

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|)

≥ (d− |φ−1(∞)|) + (d− |φ−1(R)|) + (d− |φ−1(Q)|)
= 3d− 4.

So d ≤ 2. Because φ−1(∞) = {R} and φ−1(Q) = {P}, for any α ̸= ∞, Q,
|φ−1(α)| ≥ 2. Noting that neither P nor P ′ can be equal to Q, at least one
of |φ−1(P )| and |φ−1(P ′)| must be equal to 2. Thus,

|φ−4(∞)| = |φ−1({P, P ′})| = |φ−1(P )|+ |φ−1(P ′)| ≥ 3,

as desired.
Case 4: |φ−3(∞)| = |φ−2(∞)| = |φ−1(∞)| = 2. Let φ−3(∞) = {P, P ′}, and define

Q = φ(P ), Q′ = φ(P ′), R = φ(Q), and R′ = φ(Q′). Note that φ−1(∞) =
{R,R′}, φ−1(R) = {Q}, and φ−1(Q) = {P}. Since |φ−1(R)| = 1 and
|φ−1(∞)| = 2, R ̸= ∞. Similarly R′ ̸= ∞. This implies Q ̸= R and
Q′ ̸= R′. Since Q ̸= Q′, one of these is not equal to ∞, so we can assume
Q ̸= ∞ by relabeling if necessary. Then, Q, R, and ∞ are distinct. By the
Weak Riemann-Hurwitz theorem,

2d− 2 =
∑

α∈P1(C)

(d− |φ−1(α)|)

≥ (d− |φ−1(∞)|) + (d− |φ−1(R)|) + (d− |φ−1(Q)|)
= 3d− 4.

So d ≤ 2. We have φ−1(R) = {Q} and φ−1(Q) = {P} , so we must have
|φ−1(α)| = 2 for all α ̸= Q,R. Neither of P and P ′ can be equal to Q, so



REFERENCES 23

at least one of them is not equal to Q or R and thus

|φ−4(∞)| = |φ−1({P, P ′})| = |φ−1(P )|+ |φ−1(P ′)| ≥ 3,

as desired.

We have thus shown that in all cases, |φ−4(∞)| ≥ 3, which is the same as saying
that the rational function φ4 has at least 3 distinct poles. We can now apply Siegel’s
Theorem (Theorem 25) on φ4 to see that the set

S = {α ∈ Q | φ4(α) ∈ Z}
is finite. Next, we note that for all α ∈ Q, if φn(α) is an integer and n ≥ 4, then
we can write

φn(α) = φ4(φn−4(α)),

so φn−4(α) ∈ S. This means that all integers m in the orbit Oφ(α) must either be
equal to α,φ(α), φ2(α), φ3(α), or φ4(s) for some s in S. Since S is finite, it follows
that there can only be finitely many integers in the orbit Oφ(α), which is what we
wanted to show. □

Example 32. Consider the orbit of 2 under the rational function

φ(z) =
2z2 − 2z + 1

4z2 − 4z + 1
.

We have

φ(2) =
5

9

φ2 (2) = 41

φ3 (2) =
3281

6561

φ4 (2) = 21523361

φ5(2) =
926510094425921

1853020188851841

φ6(2) = 1716841910146256242328924544641,

and so on. It appears as though every other term in this orbit is an integer and
thus there are infinitely many integers in the orbit of 2. Indeed, this pattern does
hold, which by Theorem 31 means that some iterate of φ is a polynomial. In fact,
we have

φ2(z) = 8z4 − 16z3 + 12z2 − 4z + 1.

By Corollary 30, this is actually the only way this can happen; φ2 must be a
polynomial since φ is not.
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